Abstract:
An antenna 3 of an electromagnetic probe used in investigation of geological formations GF surrounding a borehole WBH comprises a conductive base 31 and an antenna element 32. The conductive base 31 comprises an opened non-resonant cavity 33. The antenna element 32 is embedded in the cavity 33 and goes right through the cavity. The antenna element 32 is isolated from the conductive base 31. The antenna element 32 is coupled to at least one electronic module via a first 34A and a second 34B port, respectively. The electronic module operates the antenna so as to define either a substantially pure magnetic dipole, or a substantially pure electric dipole.
Abstract:
An antenna 3 of an electromagnetic probe used in investigation of geological formations GF surrounding a borehole WBH comprises a conductive base 31 and an antenna element 32. The conductive base 31 comprises an opened non-resonant cavity 33. The antenna element 32 is embedded in the cavity 33 and goes right through the cavity. The antenna element 32 is isolated from the conductive base 31. The antenna element 32 is coupled to at least one electronic module via a first 34A and a second 34B port, respectively. The electronic module operates the antenna so as to define either a substantially pure magnetic dipole, or a substantially pure electric dipole.
Abstract:
A downhole tool may include a voltage multiplier within a housing. The voltage multiplier may transform input power to the downhole tool from a first voltage to a second voltage higher than the first. The downhole tool may also include multiple shielding rings surrounding at least the voltage multiplier to reduce electric field stresses within the downhole tool. Additionally, the downhole tool may include an insulator located between the shielding rings and the housing.
Abstract:
A downhole tool may include a voltage multiplier within a housing. The voltage multiplier may transform input power to the downhole tool from a first voltage to a second voltage higher than the first. The downhole tool may also include multiple shielding rings surrounding at least the voltage multiplier to reduce electric field stresses within the downhole tool. Additionally, the downhole tool may include an insulator located between the shielding rings and the housing.
Abstract:
A well-logging tool may include a sonde housing, and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a bi-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
The current disclosure is related to a downhole tool that comprises an electronic photon generator and at least one detector. The electronic photon generator comprises a cathode configured to emit electrons, a first target configured to generate photons when struck by the electrons, a second target configured to generate photons when struck by the electrons, and a beam steering device that directs the electrons to a first or second target. The at least one detector is configured to detect at least some of the photons emitted by the first target and at least some of the photons emitted by the second target.
Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
A well-logging tool may include a sonde housing and a radiation generator carried by the sonde housing. The radiation generator may include a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled to the charged particle source, and an input voltage modulator coupled to the voltage ladder and supplying an amplitude modulated signal thereto. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
A wellhead container for a geothermal system includes a base configured to engage a bottom of a recess within a ground. The recess extends vertically from the bottom of the recess to a surface of the ground, the base includes at least one first opening, and the at least one first opening is configured to receive a drilling string. The wellhead container includes a top configured to support a load applied by a drilling machine to the wellhead container. The top includes second openings, and each second opening is configured to receive the drilling string. The wellhead container includes a sidewall extending along a vertical axis between the base and the top. The sidewall is configured to position an upper surface of the top substantially flush with the surface of the ground, and the sidewall is configured to transfer at least a portion of the load to the base.