Abstract:
In a liquid crystal display device including a plurality of pixels in a display portion and configured to performed display in a plurality of frame periods, each of the frame periods includes a writing period and a holding period, and after an image signal is input to each of the plurality of pixels in the writing period, a transistor included in each of the plurality of pixels is turned off and the image signal is held for at least 30 seconds in the holding period. The pixel includes a semiconductor layer including an oxide semiconductor layer, and the oxide semiconductor layer has a carrier concentration of less than 1×1014/cm3.
Abstract:
A reflective region where display is performed with reflection of incident light through a liquid crystal layer and a transmissive region where display is performed by transmission of light from a backlight are provided, and the reflective mode and the transmissive mode are switched. In the case of displaying a full-color image, a pixel portion includes at least a first region and a second region, a plurality of lights of different hues are sequentially supplied to the first region according to a first order, and a plurality of lights of different hues are also sequentially supplied to the second region according to a second order which is different from the first order. In the transmissive mode, the reflective region is made to display black, so that decrease in contrast due to reflection of external light at the reflective region is prevented.
Abstract:
In a liquid crystal display device including a plurality of pixels in a display portion and configured to performed display in a plurality of frame periods, each of the frame periods includes a writing period and a holding period, and after an image signal is input to each of the plurality of pixels in the writing period, a transistor included in each of the plurality of pixels is turned off and the image signal is held for at least 30 seconds in the holding period. The pixel includes a semiconductor layer including an oxide semiconductor layer, and the oxide semiconductor layer has a carrier concentration of less than 1×1014/cm3.
Abstract translation:在包括显示部分中的多个像素并且被配置为在多个帧周期中进行显示的液晶显示装置中,每个帧周期包括写入周期和保持周期,并且在将图像信号输入到每个 在所述写入周期中的所述多个像素中,包括在所述多个像素中的每一个中的晶体管被截止,并且所述图像信号在所述保持周期中保持至少30秒。 像素包括具有氧化物半导体层的半导体层,氧化物半导体层的载流子浓度小于1×10 14 / cm 3。
Abstract:
Disclosed is a liquid crystal display device and a driving method thereof for displaying an image, in which the polarity of a voltage applied to the liquid crystal element is inverted in a first frame period and a second frame period which are sequential. The voltage applied to the liquid crystal element is compensated in the case where images of the first frame period and the second frame period are judged as a still image as a result of comparison of the image of the first frame period with the image of the second frame period and the absolute value of the voltage applied to the liquid crystal element in the first frame period is different from that of the voltage applied to the liquid crystal element in the second frame period.
Abstract:
An object is to provide a light-emitting display device in which a pixel including a thin film transistor using an oxide semiconductor has a high aperture ratio. The light-emitting display device includes a plurality of pixels each including a thin film transistor and a light-emitting element. The pixel is electrically connected to a first wiring functioning as a scan line. The thin film transistor includes an oxide semiconductor layer over the first wiring with a gate insulating film therebetween. The oxide semiconductor layer is extended beyond the edge of a region where the first wiring is provided. The light-emitting element and the oxide semiconductor layer overlap with each other.
Abstract:
A positive electrode active material in which the number of defects that cause deterioration is small or progress of the defect is suppressed is provided. The positive electrode active material is used for a secondary battery. The positive electrode active material contains lithium cobalt oxide containing an additive element. After a cycle test is performed on a cell that uses the positive electrode active material for a positive electrode and a lithium electrode as a counter electrode, the positive electrode active material includes a defect and contains at least the same element as the additive element in a region in the vicinity of the defect. The additive element is contained also in a surface portion of the positive electrode active material.
Abstract:
A semiconductor device with a small variation in transistor characteristics can be provided. A step of forming an opening in a structure body including an oxide semiconductor device to reach the oxide semiconductor device, a step of embedding a first conductor in the opening, a step of forming a second conductor in contact with a top surface of the first conductor, a step of forming a first barrier insulating film by a sputtering method to cover the structure body, the first conductor, and the second conductor, and a step of forming a second barrier insulating film over the first barrier insulating film by an ALD method are included. The first barrier insulating film and the second barrier insulating film each have a function of inhibiting hydrogen diffusion.
Abstract:
An object is to provide a driving method of a liquid crystal display device with a low power consumption and a high image quality. A pixel includes a liquid crystal element and a transistor which controls supply of an image signal to the liquid crystal element. The transistor includes, in a channel formation region, a semiconductor which has a wider band gap than a silicon semiconductor and has a lower intrinsic carrier density than silicon, and has an extremely low off-state current. In inversion driving of pixels, image signals having opposite polarities are input to a pair of signal lines between which a pixel electrode is disposed. By employing such a structure, the quality of the displayed image can be increased even in the absence of a capacitor in the pixel.
Abstract:
A liquid crystal display device is provided in which the aperture ratio can be increased in a pixel including a thin film transistor in which an oxide semiconductor is used. In the liquid crystal display device, the thin film transistor including a gate electrode, a gate insulating layer and an oxide semiconductor layer which are provided so as to overlap with the gate electrode, and a source electrode and a drain electrode which overlap part of the oxide semiconductor layer is provided between a signal line and a pixel electrode which are provided in a pixel portion. The off-current of the thin film transistor is 1×10−13 A or less. A potential can be held only by a liquid crystal capacitor, without a capacitor which is parallel to a liquid crystal element, and a capacitor connected to the pixel electrode is not formed in the pixel portion.
Abstract:
It is an object to provide a semiconductor device which can supply a signal with sufficient amplitude to a scan line while power consumption is kept small. Further, it is an object to provide a semiconductor device which can suppress distortion of a signal supplied to the scan line and shorten a rising time and a falling time while power consumption is kept small. A semiconductor device which includes a plurality of pixels each including a display element and at least one first transistor and a scan line driver circuit supplying a signal for selecting the plurality of pixels to a scan line. A light-transmitting conductive layer is used for a pixel electrode layer of the display element, a gate electrode layer of the first transistor, source and drain electrode layers of the first transistor, and the scan line. The scan line driver circuit includes a second transistor and a capacitor for holding a voltage between a gate electrode layer of the second transistor and a source electrode layer of the second transistor. The source electrode of the second transistor is connected to the scan line.