Abstract:
In one form, an analog-to-digital converter (ADC) includes first and second ring-oscillator ADCs, a modulus subtractor, and a decimation filter. The first and second ring-oscillator ADCs are responsive to true and complement input voltages, respectively, have outputs for providing first and second digital phase signals, respectively, each having a first predetermined number of bits sampled at a first frequency. The modulus subtractor subtracts the second digital phase signal from the first digital phase signal to provide a phase difference signal. The decimation filter differentiates the phase difference signal at a second frequency lower than said the frequency to provide a frequency signal proportional to a differential voltage between the true input voltage and the complementary input voltage, and decimates the frequency signal to provide a digital code having a second predetermined number of bits greater than the first predetermined number of bits.
Abstract:
A signal processor for a radio frequency (RF) receiver includes a signal processing path having first and second programmable gain amplifiers and first and second offset correction circuits. The first offset correction circuit receives a first digital offset correction word and corrects a first offset of the first programmable gain amplifier by adding a first value corresponding to the first digital offset correction word to an input of the first programmable gain amplifier. The second offset correction circuit receives a second digital offset correction word and corrects a second offset of the second programmable gain amplifier by adding a first value corresponding to the second digital offset correction word to an input of the second programmable gain amplifier. A controller measures offsets of the first and second programmable gain amplifiers during a calibration, and provides the first and second offset correction words in response to the offsets.
Abstract:
In one embodiment, an internal buffer may be provided within an integrated circuit (IC) to convert a signal to an output current to be output via a pin of the IC, under control of a switch which can be controlled based on a configuration setting of the IC, and may selectively directly couple the signal to the pin when the IC is coupled to an external driver circuit.
Abstract:
In one embodiment, an apparatus includes: a first voltage controlled oscillator (VCO) analog-to-digital converter (ADC) unit to receive a first portion of a differential analog signal and convert the first portion of the differential analog signal into a first digital value; a second VCO ADC unit to receive a second portion of the differential analog signal and convert the second portion of the differential analog signal into a second digital value; a combiner to form a combined digital signal from the first and second digital values; a decimation circuit to receive the combined digital signal and filter the combined digital signal into a filtered combined digital signal; and a cancellation circuit to receive the filtered combined digital signal and generate a distortion cancelled digital signal, based at least in part on a coefficient value.
Abstract:
In one form, an integrated receiver includes a tracking bandpass filter, a tunable lowpass filter, and a mixer formed on a single integrated circuit chip. The tracking bandpass filter has an input for receiving a radio frequency (RF) input signal, and an output, and comprises a variable capacitor having a capacitance that varies in response to a bandpass frequency control signal, in parallel with an integrated inductor. The integrated inductor comprises a plurality of windings formed in a plurality of metal layers. The tunable lowpass filter has an input coupled to the output of the tracking bandpass filter, and an output and having a tuning input for receiving a cutoff frequency signal. The mixer has a signal input coupled to the output of the tunable lowpass filter, a local oscillator input for receiving a local oscillator signal, and a signal output for providing a converted RF signal.
Abstract:
An apparatus includes a splitter to receive a radio frequency (RF) signal and to provide the RF signal to multiple channels of a tuner. Each channel may include an amplifier to amplify the RF signal, a mixer to downconvert the amplified RF signal to a second frequency signal using a local oscillator (LO) signal, where each of the channels is configured to receive a different LO signal, a filter to filter the downconverted second frequency signal, and a digitizer to digitize the downconverted second frequency signal. A clock generation circuit has multiple interpolative dividers and a frequency synthesizer to generate a reference clock signal. Each of the interpolative dividers is configured to receive the reference clock signal, generate a corresponding LO signal, and provide the corresponding LO signal to the mixer of at least one of the channels.
Abstract:
In one embodiment, an internal buffer may be provided within an integrated circuit (IC) to convert a signal to an output current to be output via a pin of the IC, under control of a switch which can be controlled based on a configuration setting of the IC, and may selectively directly couple the signal to the pin when the IC is coupled to an external driver circuit.
Abstract:
A wideband power detector (peak or RMS) is placed in a base-band portion of a receiver chain implemented with a current mode RF front end. A differential transimpedance amplifier (TIA) includes a current sense circuit that replicates the input currents to the TIA as current sense output voltages without the current sense output voltages being affected by the filter characteristics of the TIA.
Abstract:
A transmitter including a frequency synthesizer with a voltage-controlled oscillator that provides an oscillating signal, a programmable delay circuit that delays the oscillating signal to provide a delayed oscillating signal, a power amplifier that is configured to amplify the delayed oscillating signal for transmission sufficient to produce interference, and a delay controller that programs the delay circuit with a delay time that reduces interference caused by coupling from the power amplifier to the voltage-controlled oscillator. The delay circuit may be programmed to reduce control voltage change of the voltage-controlled oscillator as a function of delay change, and/or to reduce phase noise degradation at an output of the transmitter as a function of delay change. The delay may be adjusted based on detected operating temperature. A calibration value may be determined at a calibration frequency, in which a frequency offset may be determined based on a selected channel frequency.
Abstract:
In one example, a method includes: at a beginning of a packet communication, setting a maximum gain setting for a plurality of gain components of a receiver; and during a preamble portion of the packet communication, reducing a gain setting for one or more of the plurality of gain components in response to at least one of a first signal output by a first component of the receiver being greater than a first threshold and a second signal output by a second component of the receiver being greater than a second threshold.