Abstract:
There is provided a laser emitting apparatus including a semiconductor laser, a grating positioned relative to the semiconductor laser to form a resonator structure therebetween, and an optical system positioned between the semiconductor laser and the grating. The optical system is configured and arranged so that confocal points are formed on both a light emitting surface of the semiconductor laser and a reflection surface of the grating.
Abstract:
A light receiving element includes a surface recombination prevention layer composed of a first compound semiconductor on which light is incident; a photoelectric conversion layer composed of a second compound semiconductor; and a compound semiconductor layer composed of a third compound semiconductor, the surface recombination prevention layer having a thickness of 30 nm or less. Also, there are provided an image capturing element including the light receiving element, and an image capturing apparatus including the image capturing element.
Abstract:
[Solving Means] A tactile sense presentation apparatus includes a movable body, an actuator unit, and a signal generation unit. The actuator unit is connected to the movable body. The signal generation unit is configured to supply a driving signal to the actuator unit, the driving signal generating a vibration on the actuator unit, the vibration having within a period at least one of a plurality of different amplitudes and a plurality of different frequencies.
Abstract:
Provided is an optical semiconductor element including: a stacked structure body 20 formed of a first compound semiconductor layer 21, a third compound semiconductor layer (active layer) 23, and a second compound semiconductor layer 22. A fundamental mode waveguide region 40 with a waveguide width W1, a free propagation region 50 with a width larger than W1, and a light emitting region 60 having a tapered shape (flared shape) with a width increasing toward a light emitting end surface 25 are arranged in sequence.
Abstract:
There is provided a laser emitting apparatus including a semiconductor laser, a grating positioned relative to the semiconductor laser to form a resonator structure therebetween, and an optical system positioned between the semiconductor laser and the grating. The optical system is configured and arranged so that confocal points are formed on both a light emitting surface of the semiconductor laser and a reflection surface of the grating.
Abstract:
A light receiving/emitting element 11 includes: a light receiving/emitting layer 21 in which a plurality of compound semiconductor layers are stacked; and an electrode 30 having a first surface 30A and a second surface 30B and made of a transparent conductive material, in which the second surface faces the first surface 30A, and the electrode is in contact, at the first surface 30A, with the light receiving/emitting layer 21. The transparent conductive material contains an additive made of one or more metals, or a compound thereof, selected from the group consisting of molybdenum, tungsten, chromium, ruthenium, titanium, nickel, zinc, iron, and copper, and concentration of the additive contained in the transparent conductive material near an interface to the first surface 30A of the electrode 30 is higher than concentration of the additive contained in the transparent conductive material near the second surface 30B of the electrode 30.