Abstract:
The present disclosure is directed to a package that includes openings that extend into the package. The openings are filled with a conductive material to electrically couple a first die in the package to a second die in the package. The conductive material that fills the openings forms electrical interconnection bridges between the first die and the second die. The openings in the package may be formed using a laser and a non-doped molding compound, a doped molding compound, or a combination of doped or non-doped molding compounds.
Abstract:
A semiconductor package includes a die and a first lamination layer on the die with openings through the first lamination layer. A redistribution layer is on the first lamination layer and extends through the openings to the die. A plurality of conductive extensions are on the redistribution layer with each stud including a first surface on the redistribution layer, a second surface opposite to the first surface, and a sidewall between the first surface and the second surface. A second lamination layer is on the redistribution layer and the first lamination layer with the die encapsulated in molding compound. The second lamination layer is removed around the conductive extensions to expose the second surface and at least a portion of the sidewall of each stud to improve solder bond strength when mounting the package to a circuit board.
Abstract:
A semiconductor package that is a proximity sensor includes a light transmitting die, a light receiving die, an ambient light sensor, a cap, and a substrate. The light receiving die and the light transmitting die are coupled to the substrate. The cap is coupled to the substrate forming a first chamber around the light transmitting die and a second chamber around the light receiving die. The cap further includes a recess with contact pads. The ambient light sensor is mounted within the recess of the cap and coupled to the contact pads. The cap includes electrical traces that are coupled to the contact pads within the recess coupling the ambient light sensor to the substrate. By utilizing a cap with a recess containing contact pads, a proximity sensor can be formed in a single semiconductor package all while maintaining a compact size and reducing the manufacturing costs of proximity sensors.
Abstract:
A proximity sensor having a relatively small footprint includes a substrate, a semiconductor die, a light emitting device, and a cap. The light emitting device overlies the semiconductor die. The semiconductor die is secured to the substrate and includes a sensor area capable of detecting light from by the light emitting device. The cap also is secured to the substrate and includes a light barrier that prevents some of the light emitted by the light emitting device from reaching the sensor area. In one embodiment, the light emitting device and the semiconductor die are positioned on the same side of the substrate, wherein the light emitting device is positioned on the semiconductor die. In another embodiment, the light emitting device is positioned on one side of the substrate and the semiconductor die is positioned on an opposing side of the substrate.
Abstract:
An image sensor device may include an interconnect layer, an image sensor IC on the interconnect layer, and a barrel adjacent the interconnect layer and having first electrically conductive traces. The image sensor device may include a liquid crystal focus cell carried by the barrel and having cell layers, and second electrically conductive contacts. A pair of adjacent cell layers may have different widths. The image sensor device may include an electrically conductive adhesive body coupling at least one of the second electrically conductive contacts to a corresponding one of the first electrically conductive traces.
Abstract:
A semiconductor package that is a proximity sensor includes a light transmitting die, a light receiving die, an ambient light sensor, a cap, and a substrate. The light receiving die and the light transmitting die are coupled to the substrate. The cap is coupled to the substrate forming a first chamber around the light transmitting die and a second chamber around the light receiving die. The cap further includes a recess with contact pads. The ambient light sensor is mounted within the recess of the cap and coupled to the contact pads. The cap includes electrical traces that are coupled to the contact pads within the recess coupling the ambient light sensor to the substrate. By utilizing a cap with a recess containing contact pads, a proximity sensor can be formed in a single semiconductor package all while maintaining a compact size and reducing the manufacturing costs of proximity sensors.
Abstract:
The present disclosure provides devices and methods in which a semiconductor chip has a reduced size and thickness. The device is manufactured by utilizing a sacrificial or dummy silicon wafer. A recess is formed in the dummy silicon wafer where the semiconductor chip is mounted in the recess. The space between the dummy silicon wafer and the chip is filled with underfill material. The dummy silicon wafer and the backside of the chip are etched using any suitable etching process until the dummy silicon wafer is removed, and the thickness of the chip is reduced. With this process, the overall thickness of the semiconductor chip can be thinned down to less than 50 μm in some embodiments. The ultra-thin semiconductor chip can be incorporated in manufacturing flexible/rollable display panels, foldable mobile devices, wearable displays, or any other electrical or electronic devices.
Abstract:
A carrier wafer has a back face and a front face and a network of electrical connections between the back face and the front face. A first electronic chip is mounted with its bottom face on top of the front face of the carrier wafer. The first electronic chip has a through-opening extending between the bottom face and a face. A second electronic chip is installed in the through-opening and mounted to the front face of the carrier wafer.
Abstract:
A semiconductor package having a die with a sidewall protected by molding compound, and methods of forming the same are disclosed. The package includes a die with a first surface opposite a second surface and sidewalls extending between the first and second surfaces. A redistribution layer is formed on the first surface of each die. An area of the first surface of the die is greater than an area of the redistribution layer, such that a portion of the first surface of the die is exposed. When molding compound is formed over the die and the redistribution layer to form a semiconductor package, the molding compound is on the first surface of the die between an outer edge of the redistribution layer and an outer edge of the first surface. The molding compound is also on the sidewalls of the die, which provides protection against chipping or cracking during transport.
Abstract:
The present disclosure is directed to at least one semiconductor package including a die within an encapsulant having a first sidewall, an adhesive layer on the encapsulant and having a second sidewall coplanar with the first sidewall of the encapsulant, and an insulating layer on the adhesive layer having a third sidewall coplanar with the first sidewall and the second sidewall. A method of manufacturing the at least one semiconductor package includes forming an insulating layer on a temporary adhesion layer of a carrier, forming an adhesive layer on the insulating layer, and forming a plurality of openings through the adhesive layer and the insulating layer. The plurality of openings through the adhesive layer and the insulating layer may be formed by exposing the adhesive layer and the insulating layer to a laser.