SEMICONDUCTOR DEVICE WITH RELAXATION REDUCTION LINER AND ASSOCIATED METHODS
    12.
    发明申请
    SEMICONDUCTOR DEVICE WITH RELAXATION REDUCTION LINER AND ASSOCIATED METHODS 审中-公开
    具有放松减少衬垫和相关方法的半导体器件

    公开(公告)号:US20150097212A1

    公开(公告)日:2015-04-09

    申请号:US14048232

    申请日:2013-10-08

    Abstract: A method for forming a semiconductor device includes forming a mask layer on a stressed semiconductor layer of a stressed, semiconductor-on-insulator wafer. An isolation trench bounding the stressed semiconductor layer is formed. The isolation trench extends through the mask layer and into the SOI wafer past an oxide layer thereof. A dielectric body is formed in the isolation trench. A relaxation reduction liner is formed on the dielectric body and on an adjacent sidewall of the stressed semiconductor layer. The mask layer on the stressed semiconductor layer is removed.

    Abstract translation: 一种用于形成半导体器件的方法包括在应力半导体绝缘体晶片的应力半导体层上形成掩模层。 形成包围应力半导体层的隔离沟槽。 隔离沟槽延伸穿过掩模层并穿过SOI晶片的氧化物层。 绝缘体形成在隔离沟槽中。 在电介质体和应力半导体层的相邻侧壁上形成松弛减小衬垫。 应力半导体层上的掩模层被去除。

    METHOD TO INDUCE STRAIN IN FINFET CHANNELS FROM AN ADJACENT REGION

    公开(公告)号:US20210057414A1

    公开(公告)日:2021-02-25

    申请号:US17093528

    申请日:2020-11-09

    Abstract: Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed using two epitaxial layers of different lattice constants that are grown over a bulk substrate. A first thin, strained, epitaxial layer may be cut to form strain-relieved base structures for fins. The base structures may be constrained in a strained-relieved state. Fin structures may be epitaxially grown in a second layer over the base structures. The constrained base structures can cause higher amounts of strain to form in the epitaxially-grown fins than would occur for non-constrained base structures.

    SEMICONDUCTOR DEVICE WITH FIN AND RELATED METHODS
    19.
    发明申请
    SEMICONDUCTOR DEVICE WITH FIN AND RELATED METHODS 审中-公开
    具有FIN和相关方法的半导体器件

    公开(公告)号:US20170012127A1

    公开(公告)日:2017-01-12

    申请号:US15255862

    申请日:2016-09-02

    Abstract: A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, and source and drain regions adjacent the channel region to generate shear and normal strain on the channel region. A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, source and drain regions adjacent the channel region, and a gate over the channel region. The fin may be canted with respect to the source and drain regions to generate shear and normal strain on the channel region.

    Abstract translation: 半导体器件可以包括衬底,在衬底上方具有沟道区域的鳍,以及与沟道区相邻的源区和漏区,以在沟道区上产生剪切和正应变。 半导体器件可以包括衬底,在衬底上方的鳍片,其中具有沟道区域,与沟道区域相邻的源极和漏极区域以及沟道区域上的栅极。 翅片可以相对于源极和漏极区域倾斜以在沟道区域上产生剪切和正常应变。

    DEFECT-FREE STRAIN RELAXED BUFFER LAYER
    20.
    发明申请
    DEFECT-FREE STRAIN RELAXED BUFFER LAYER 审中-公开
    无缺陷的松弛缓冲层

    公开(公告)号:US20160190304A1

    公开(公告)日:2016-06-30

    申请号:US14588221

    申请日:2014-12-31

    Abstract: A modified silicon substrate having a substantially defect-free strain relaxed buffer layer of SiGe is suitable for use as a foundation on which to construct a high performance CMOS FinFET device. The substantially defect-free SiGe strain-relaxed buffer layer can be formed by making cuts in, or segmenting, a strained epitaxial film, causing edges of the film segments to experience an elastic strain relaxation. When the segments are small enough, the overall film is relaxed so that the film is substantially without dislocation defects. Once the substantially defect-free strain-relaxed buffer layer is formed, strained channel layers can be grown epitaxially from the relaxed SRB layer. The strained channel layers are then patterned to create fins for a FinFET device. In one embodiment, dual strained channel layers are formed—a tensilely strained layer for NFET devices, and a compressively strained layer for PFET devices.

    Abstract translation: 具有基本上无缺陷的SiGe应变松弛缓冲层的改性硅衬底适用于构建高性能CMOS FinFET器件的基础。 可以通过切割或分割应变的外延膜来形成基本上无缺陷的SiGe应变松弛缓冲层,使得薄膜段的边缘经历弹性应变弛豫。 当片段足够小时,整个膜被松弛,使得膜基本上没有位错缺陷。 一旦形成了基本上无缺陷的应变松弛缓冲层,则可以从松弛的SRB层外延生长应变通道层。 然后将应变通道层图案化以产生用于FinFET器件的鳍片。 在一个实施例中,形成双应变通道层 - 用于NFET器件的拉伸应变层,以及用于PFET器件的压缩应变层。

Patent Agency Ranking