Abstract:
The present disclosure is directed to a gas sensor device that includes a plurality of gas sensors. Each of the gas sensors includes a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. Each of the SMO films is designed to be sensitive to a different gas concentration range. As a result, the gas sensor device is able to obtain accurate readings for a wide range of gas concentration levels. In addition, the gas sensors are selectively activated and deactivated based on a current gas concentration detected by the gas sensor device. Thus, the gas sensor device is able to conserve power as gas sensors are on when appropriate instead of being continuously on.
Abstract:
Miniature resistive gas detectors incorporate thin films that can selectively identify specific gases when heated to certain characteristic temperatures. A solid state gas sensor module is disclosed that includes a gas sensor, a heater, and a temperature sensor, stacked over an insulating recess. The insulating recess is partially filled with a support material that provides structural integrity. The solid state gas sensor module can be integrated on top of an ASIC on a common substrate. With sufficient thermal insulation, such a gas detector can be provided as a low-power component of mobile electronic devices such as smart phones. A method of operating a multi-sensor array allows detection of relative concentrations of different gas species by either using dedicated sensors, or by thermally tuning the sensors to monitor different gas species.
Abstract:
A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measurable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
Abstract:
An electronic device is formed by depositing polyimide on a glass substrate. A conductive material is deposited on the polyimide and patterned to form electrodes and signal traces. Remaining portions of the electronic device are formed on the polyimide. A second polyimide layer is then formed on the first polyimide layer. The glass substrate is then removed, exposing the electrodes and the top surface of the electronic device.
Abstract:
A bio-fluid test strip includes a fluid receiving area and a contact pad area for interfacing with a fluid sensing device. The test strip includes a fluid sensing electrodes and a first temperature sensing resistor in the fluid receiving area. The test strip further includes a second temperature sensing resistor in the contact pad area. The first and second temperature sensing resistors together provide an indication of the temperature difference between the fluid sensing area and ambience.
Abstract:
An electronic device is formed by depositing polyimide on a glass substrate. A conductive material is deposited on the polyimide and patterned to form electrodes and signal traces. Remaining portions of the electronic device are formed on the polyimide. A second polyimide layer is then formed on the first polyimide layer. The glass substrate is then removed, exposing the electrodes and the top surface of the electronic device.
Abstract:
The present disclosure is directed to an infrared sensor that includes a plurality of pairs of support structures positioned on the substrate, each pair including a first support structure adjacent to a second support structure. The sensor includes plurality of pixels, where each pixel is associated with one of the pairs of support structures. Each pixel includes a first infrared reflector layer on the substrate between the first and the second support structures, a membrane formed on the first and second support structures, a thermally conductive resistive layer on the membrane and positioned above the first infrared reflector layer, a second infrared reflector layer on the resistive layer, and an infrared absorption layer on the second infrared reflector layer.
Abstract:
An integrated circuit is formed having an array of memory cells located in the dielectric stack above a semiconductor substrate. Each memory cell has two adjustable resistors and two heating elements. A dielectric material separates the heating elements from the adjustable resistors. One heating element alters the resistance of one of the resistors by applying heat thereto to write data to the memory cell. The other heating element alters the resistance of the other resistor by applying heat thereto to erase data from the memory cell.
Abstract:
Sensors for air flow, temperature, pressure, and humidity are integrated onto a single semiconductor die within a miniaturized Venturi chamber to provide a microelectronic semiconductor-based environmental multi-sensor module that includes an air flow meter. One or more such multi-sensor modules can be used as building blocks in dedicated application-specific integrated circuits (ASICs) for use in environmental control appliances that rely on measurements of air flow. Furthermore, the sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. By integrating the Venturi chamber with accompanying environmental sensors, correction factors can be obtained and applied to compensate for temporal humidity fluctuations and spatial temperature variation using the Venturi apparatus.
Abstract:
The present disclosure is directed to a gas sensor device that detects gases with large molecules (e.g., a gas with a molecular weight between 150 g/mol and 450 g/mol), such as siloxanes. The gas sensor device includes a thin film gas sensor and a bulk film gas sensor. The thin film gas sensor and the bulk film gas sensor each include a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. The SMO film of the thin film gas sensor is an thin film (e.g., between 90 nanometers and 110 nanometers thick), and the SMO film of the bulk film gas sensor is an thick film (e.g., between 5 micrometers and 20 micrometers thick). The gas sensor device detects gases with large molecules based on a variation between resistances of the SMO thin film and the SMO thick film.