Abstract:
A wrist-type body composition measuring apparatus is provided to measure body composition conveniently. The wrist-type body composition measuring apparatus includes a main body, a strap, first and second inner electrodes, and first and second outer electrodes. The main body includes a measurer configured to measure a body impedance of a user and an analyzer configured to analyze a body composition of the user based on the measured body impedance.
Abstract:
A reagent supply device includes a plurality of chambers which are separated from each other such that different reagents may be injected, the plurality of chambers having bottom surfaces made of a membrane, the membrane comprising a destruction pattern which is formed at a position corresponding to each of the plurality of chambers and breachable by an external impact to discharge the injected reagent from the chamber.
Abstract:
An apparatus for gene amplification includes a gene amplification chip including a well configured to accept a sample that is loaded into the well; the gene amplification chip being configured to: thermally dissolve the sample in the well so that a microbe present in the sample is thermally dissolved in the well to release genes in the microbe; and amplify the released genes in the well. The apparatus for gene amplification also includes a temperature controller configured to control a thermal dissolution temperature and a gene amplification temperature of the well.
Abstract:
An apparatus for obtaining bio information includes: a first electrode portion including a current electrode and a voltage electrode arranged to contact a first body portion of a subject; a second electrode portion including a current electrode and a voltage electrode arranged to contact a second body portion of the subject; and a measuring unit configured to measure a bio impedance of the subject by applying a current to the current electrodes of the first and second electrode portions and detecting a voltage at the voltage electrodes of the first and second electrode portions. In order to decrease errors of a measured bio impedance, contact resistances of the first and second body portions of the subject contacting the current electrode and the first and second body portions of the subject contacting the voltage electrode are different from each other, for at least one of the first and second electrode portions.
Abstract:
Provided is a method of measuring body fat of a user, the method including: measuring a first impedance by using a 4-point measuring method; measuring a second impedance by using a 2-point measuring method; determining a bio impedance by using the first impedance and the second impedance; and determining a body fat percentage by using the bio impedance and body information of the user.
Abstract:
A body impedance measuring apparatus includes: a first module including a first input electrode and a first output electrode which are configured to contact a subject; a second module including a second input electrode and a second output electrode which are configured to contact the subject; a connection member configured to connect the first module to the second module and adjust a distance between the first module and the second module; and a measuring unit configured to apply a current to the first and second input electrodes, detect a voltage between the first and second output electrodes, and determine a body impedance of a subject based on the detected voltage. At least a component of the measuring unit is disposed in the first module and is electrically connected to the second module through the connection member.
Abstract:
The present disclosure provides methods and apparatuses for biomaterial detection sensors. In some embodiments, a biomaterial detection sensor includes a membrane including a plurality of wells. Each of the plurality of wells is configured to encapsulate a biomaterial contained in a sample solution. A surface of the membrane is selectively modified into at least one of a hydrophilic surface and a hydrophobic surface. In some embodiments, a method of manufacturing a biomaterial detection sensor includes depositing a first membrane and a second membrane on respective surfaces of a wafer, forming a window by etching the first membrane and the first surface of the wafer, forming a plurality of wells on the second membrane, modifying a surface of the second membrane into at least one of a hydrophilic surface and a hydrophobic surface; and transferring a two-dimensional graphene oxide material onto a bottom of each of the plurality of wells.
Abstract:
An apparatus and method for bio-particle detection are provided. The apparatus for bio-particle detection includes: a bio-particle detection chip including a substrate having a plurality of through-hole groups, each through-hole group of the plurality of through-hole groups including through-holes which pass through the substrate from a first surface of the substrate toward an second surface of the substrate opposite to the first surface, and which are configured to accommodate a sample solution loaded therein; and a processor configured to determine a number of through-holes, among the through holes of at least one through-hole group of the plurality of through-hole groups, having a target material encapsulated therein, based on at least one of an electrical signal and an optical signal corresponding to the through-holes of the at least one through-hole group, and to estimate a concentration of the target material based on the determined number.
Abstract:
A method of measuring a bio signal using a bio signal measuring apparatus includes: positioning electrodes included as part of the bio signal measuring apparatus to contact a surface of an examinee; switching an impedance measurer included as part of the bio signal measuring apparatus and including a voltmeter and a current source; measuring a first impedance value of the examinee while operating the impedance measurer according to a first mode; switching the impedance measurer to a second mode; measuring a second impedance value of the examinee while operating the impedance measurer according to a second mode; and obtaining bio impedance of the examinee based on the first and second impedance values and an internal impedance of the current source.
Abstract:
An apparatus for measuring a concentration of a target gas includes: a gas sensor including a sensing layer having an electric resistance that changes by an oxidation reaction or a reduction reaction between gas molecules and the sensing layer; and a processor configured to, in response to the target gas being introduced along with air into the gas sensor, monitor a change of the electric resistance of the sensing layer and determine the concentration of the target gas by analyzing a shape of the change of the electric resistance.