Abstract:
A gene amplification chip may include a substrate; a through-hole array including through-holes that extend from an upper surface of the substrate to a lower surface of the substrate and in which a gene amplification reaction occurs; and a photothermal film provided on at least one of the upper surface and the lower surface of the substrate and configured to generate heat using light.
Abstract:
A bio-information processing apparatus may include: a main body; a strap which is connected to both ends of the main body; an impedance measurer configured to measure a bio-impedance of a user while the main body and the strap are in contact with the user; and a processor configured to estimate a body water amount of the user by applying the measured bio-impedance to a body water estimation model.
Abstract:
A method of measuring a bio signal using a bio signal measuring apparatus includes: positioning electrodes included as part of the bio signal measuring apparatus to contact a surface of an examinee; switching an impedance measurer included as part of the bio signal measuring apparatus and including a voltmeter and a current source; measuring a first impedance value of the examinee while operating the impedance measurer according to a first mode; switching the impedance measurer to a second mode; measuring a second impedance value of the examinee while operating the impedance measurer according to a second mode; and obtaining bio impedance of the examinee based on the first and second impedance values and an internal impedance of the current source.
Abstract:
A body weight measuring apparatus and a body weight measuring method are provided. The body weight measuring apparatus includes an input unit configured to receive body information of a user other than bio impedance information; a bio impedance obtaining unit comprising a plurality of electrodes configured to be in contact with the user to measure a bio impedance of the user; and a body weight obtaining unit configured to obtain a weight of the user based on the measured bio impedance and the received body information.
Abstract:
An apparatus for gene amplification includes a gene amplification chip including a well configured to accept a sample that is loaded into the well; the gene amplification chip being configured to: thermally dissolve the sample in the well so that a microbe present in the sample is thermally dissolved in the well to release genes in the microbe; and amplify the released genes in the well. The apparatus for gene amplification also includes a temperature controller configured to control a thermal dissolution temperature and a gene amplification temperature of the well.
Abstract:
An apparatus for obtaining bio information includes: a first electrode portion including a current electrode and a voltage electrode arranged to contact a first body portion of a subject; a second electrode portion including a current electrode and a voltage electrode arranged to contact a second body portion of the subject; and a measuring unit configured to measure a bio impedance of the subject by applying a current to the current electrodes of the first and second electrode portions and detecting a voltage at the voltage electrodes of the first and second electrode portions. In order to decrease errors of a measured bio impedance, contact resistances of the first and second body portions of the subject contacting the current electrode and the first and second body portions of the subject contacting the voltage electrode are different from each other, for at least one of the first and second electrode portions.
Abstract:
Provided is a method of measuring body fat of a user, the method including: measuring a first impedance by using a 4-point measuring method; measuring a second impedance by using a 2-point measuring method; determining a bio impedance by using the first impedance and the second impedance; and determining a body fat percentage by using the bio impedance and body information of the user.
Abstract:
A body impedance measuring apparatus includes: a first module including a first input electrode and a first output electrode which are configured to contact a subject; a second module including a second input electrode and a second output electrode which are configured to contact the subject; a connection member configured to connect the first module to the second module and adjust a distance between the first module and the second module; and a measuring unit configured to apply a current to the first and second input electrodes, detect a voltage between the first and second output electrodes, and determine a body impedance of a subject based on the detected voltage. At least a component of the measuring unit is disposed in the first module and is electrically connected to the second module through the connection member.
Abstract:
A gene amplification chip includes a chamber layer, a cover layer, a bottom layer, an inlet, and an outlet. The chamber layer has a first passage and through holes which are formed on one side of the first passage. The cover layer is disposed on one side of the chamber layer and has a cover channel formed to communicate with the first passage and the through holes, wherein the cover channel, the first passage and the through holes allow passage of liquids in a divided manner. The bottom layer is disposed on another side of the chamber layer and has a bottom channel formed to communicate with the first passage and the through holes. The inlet is formed in the cover layer and communicates with the cover channel. The outlet communicates with any one of the cover channel and the bottom channel.