Abstract:
A method of detecting a dangerous situation includes obtaining a first image including a first object capable of generating a movement, by using a dynamic vision sensor (DVS); detecting, from the first image, a second image including the first object in a predefined pose; and determining whether a situation of the first object is the dangerous situation by analyzing the second image.
Abstract:
A method of analyzing nucleic acid by compensating for crosstalk in polymerase chain reaction (PCR) data and other data, wherein crosstalk signals associated with multiple fluorescent dyes are corrected by using fluorescent intensity variations detected from a concentration difference of the fluorescent dyes, and apparatus for performing the method.
Abstract:
A method for amplifying a nucleic acid amplification in the presence of an ionic liquid that suppresses an inhibitor of nucleic acid amplification, particularly when in a biological material, and a composition useful for performing the method.
Abstract:
A method and apparatus for performing quantitative analysis of a nucleic acid by determining a curve-fitting area based on fluorescence intensity data obtained by performing PCR on a target nucleic acid; analyzing parameters for amplification efficiency and nucleic acid concentration by curve-fitting a result of performing PCR on a reference nucleic acid with a known initial nucleic acid concentration; and estimating the initial nucleic acid concentration of the target nucleic acid by performing curve-fitting on the determined curve-fitting area using the analyzed parameters.
Abstract:
A fluid control apparatus including a detecting unit including a light source for irradiating light toward a microfluidic device, and a photodetector for detecting light reflected from the microfluidic device, a transporting unit for moving the detecting unit; and a determining unit for controlling a transporting operation by the transporting unit, where determining a state of a fluid at a particular position relative to the microfluidic device is based on light reflected from the microfluidic device, and method of using same.
Abstract:
A method includes obtaining, by a device and from a dynamic vision sensor (DVS), a set of images of an object that identifies that the object has moved. The method includes determining, by the device, that the object is associated with a predetermined posture based on the set of images. The method includes determining, by the device, a group to which the object belongs based on an attribute of the object and an attribute of the group. The method includes determining, by the device, whether the object is associated with the dangerous situation based on identifying that the object is associated with the predetermined posture and based on setting information associated with the group to which the object belongs.
Abstract:
A reagent supply device includes a plurality of chambers which are separated from each other such that different reagents may be injected, the plurality of chambers having bottom surfaces made of a membrane, the membrane comprising a destruction pattern which is formed at a position corresponding to each of the plurality of chambers and breachable by an external impact to discharge the injected reagent from the chamber.
Abstract:
A solid reagent dissolving device including a flexible layer; an upper plate disposed on the flexible layer; and a lower plate disposed under the flexible layer, wherein the upper plate comprises a plurality of minute channels, a dissolution chamber connected with the plurality of minute channels, and a protrusion for limiting a flow of a fluid flowing through one of the plurality of minute channels, the lower plate comprises a plurality of penetration holes that correspond to the protrusion and the dissolution chamber, respectively, and one side of each of the plurality of penetration holes, the plurality of minute channels, and the dissolution chamber are covered with the flexible layer, and method of using same.
Abstract:
A micro-device for disrupting cells includes a first chamber in which the cells are disrupted, a second chamber which is pressurized and depressurized, a flexible membrane which separates the first chamber and the second chamber and is vibrated by pressuring and depressurizing the second chamber, and a micro-unit confined in the first chamber, where the micro-unit disrupts the cells in the first chamber