Abstract:
A coordinate indicating apparatus includes a channel electrode which includes a first plurality of electrodes arranged in a first direction and a second plurality of electrodes arranged in a second direction perpendicular to the first direction, and which has capacitance between the first plurality of electrodes and the second plurality of electrodes, the capacitance being changed by an approaching contact object; a driver configured to apply driving signals to the first plurality of electrodes simultaneously; a receiver configured to receive response signals from the second plurality of electrodes; and a controller configured to determine a location of the contact object based on the driving signals transmitted to the first plurality of electrodes and the response signals received from the second plurality of electrodes, wherein the driver is configured to simultaneously apply, to the first plurality of electrodes, continuous driving signals according to a matrix corresponding to a Hadamard matrix, and wherein the driving signals exclude a time section.
Abstract:
A method of growing a nitride semiconductor layer may include preparing a substrate in a reactor, growing a first nitride semiconductor on the substrate at a first temperature, the first nitride semiconductor having a thermal expansion coefficient different from a thermal expansion coefficient of the substrate, and removing the substrate at a second temperature.
Abstract:
A nitride semiconductor device includes a dislocation control layer on a substrate, and a nitride semiconductor layer on the dislocation control layer. The dislocation control layer includes a nanocomposite of a first nanoparticle made of a first material and at least one second nanoparticle made of a second material.
Abstract:
A touch screen device, an input device, and a control method thereof are provided. The touch screen device includes a channel electrode configured to receive a signal from an input device, a driver circuit configured to apply a drive signal to the channel electrode, a receiver circuit configured to receive the signal from the channel electrode, and a processor configured to control the driver to transmit an input device identification information to the input device such that, when a signal transmitted from the input device is received through the receiver circuit, based on a frequency of the received signal or a pattern of the received signal, the processor determines if the received signal is associated with the input device identification information transmitted to the input device. Accordingly, a touch screen device capable of touch inputting with respect to a plurality of input devices can be provided.
Abstract:
An electronic apparatus for measuring a frequency of an electromagnetic signal emitted from a coordinate indicating device contacting a sensor pad, and method are provided. The electronic apparatus includes a signal receiving unit that receives the electromagnetic signal, a band-pass filter unit including a pair of band-pass filters that generates a first filtered signal and a second filtered signal by respectively filtering the electromagnetic signal in a first frequency range and a second frequency range corresponding to a center frequency of the coordinate indicating device, and a controller that acquires a frequency value of the electromagnetic signal based on a ratio value between the first filtered signal and the second filtered signal.
Abstract:
A touch panel is provided. The touch panel includes a channel electrode unit configured to include a plurality of first electrodes disposed in a first direction and a plurality of second electrodes disposed in a second direction intersecting with the first direction, and a controlling unit configured to apply a driving signal to the electrodes in the channel electrode unit in a unit of a plurality of electrodes, transmit the driving signal to a resonance circuit of a stylus pen approaching the touch panel through a capacitive coupling, and receive response signals generated from the resonance circuit of the stylus pen from each of the plurality of electrodes to determine a location of the stylus pen including the resonance circuit.
Abstract:
An input device and method for control based on input device tilt is provided. The input device includes a conductive tip formed at one end of the input device, a resonant circuit unit configured to generate a response signal corresponding to a signal entering through the conductive tip and output the response signal through the conductive tip, and a connection part formed between the conductive tip and a body of the input device to enclose a periphery of the conductive tip so as to have a part of the conductive tip exposed from one end of the input device. The connection part includes a metal member having a larger cross-section area than a cross-section area of the conductive tip and which affects signal intensity in response to input device tilt as detected by a touch screen of an electronic device.
Abstract:
A coordinate measuring apparatus and a method of controlling the same are provided. The coordinate measuring apparatus includes a touch panel including a plurality of electrodes, a driver configured to generate a driving signal and to provide the driving signal to the touch panel, a receiver configured to receive a first receiving signal for detecting a change in capacitance from the touch panel and a second receiving signal corresponding to a signal transmitted from a coordinate indicating apparatus, and a processor configured to determine an activation region from which a hand position is detected, based on the second receiving signal, and determine the hand position in the determined activation region.
Abstract:
A method of growing a nitride semiconductor layer includes forming a plurality of nano-structures on a substrate, forming a first buffer layer on the substrate such that upper portions of each of the nano-structures are exposed, removing the nano-structures to form voids in the first buffer layer, and growing a nitride semiconductor layer on the first buffer layer including the voids.