Abstract:
A memory system includes a memory controller and a memory. The memory controller selectively operates in a first mode and a second mode. In the first mode, the memory controller transmits a first command continuously during a plurality of clock cycles. In the second mode, the memory controller to mix a second command with the first command and transmit the mixture of the first command and the second command. The memory changes command latch timing depending on the first or second mode.
Abstract:
A memory system includes a memory controller and a memory. The memory controller selectively operates in a first mode and a second mode. In the first mode, the memory controller transmits a first command continuously during a plurality of clock cycles. In the second mode, the memory controller to mix a second command with the first command and transmit the mixture of the first command and the second command. The memory changes command latch timing depending on the first or second mode.
Abstract:
A memory device includes: a first memory bank and a second memory bank; a control logic configured to receive a command and control an internal operation of the memory device; and an error correction code (ECC) circuit configured to retain in a latch circuit first read data read from the first memory bank in response to a first masked write (MWR) command for the first memory bank based on a latch control signal from the control logic, generate a first parity from data in which the first read data retained in the latch circuit is merged with first write data corresponding to the first MWR command in response to a first write control signal received from the control logic, and control an ECC operation to retain in the latch circuit second read data read from the second memory bank based on the latch control signal.
Abstract:
A memory device includes: a first clock receiver configured to receive a first clock signal; a second clock receiver configured to receive a second clock signal when data is input or output, wherein the second clock signal has a first clock frequency in a preamble period, and has a second clock frequency different from the first clock frequency after the preamble period; a command decoder configured to receive a clock synchronization command synchronized with the first clock signal and generate a clock synchronization signal, wherein the clock synchronization signal is generated during the preamble period; and a clock synchronizing circuit configured to generate a plurality of division clock signals in response to the second clock signal, latch the clock synchronization signal during the preamble period, and selectively provide the plurality of division clock signals as internal data clock signals according to a result of the latching.
Abstract:
A memory device includes a first switch for switching a first power voltage and transmitting the first power voltage to a common node of a first power rail. A second switch switches a second power voltage and transmits the second power voltage to the common node. A control logic generates a first control signal for controlling the first switch during initial driving of the memory device. A masking circuit controls the first switch to maintain a turn on state in at least a partial period of the initial driving period of the memory device by providing a first masking control signal obtained by masking the first control signal to the first switch.
Abstract:
A command processing circuit of a memory device includes a clock divider, a clock controller and a command decoder. The clock divider generates a plurality of divided clock signals based on an external clock signal having a first frequency. The divided clock signals have a second frequency lower than the first frequency. Each of the divided clock signals has a phase that is different from phases of the other divided clock signals. The clock controller generates an operating clock signal based on a command signal and the divided clock signals, where the command signal is transferred in synchronization with the external clock signal. The operating clock signal has the second frequency and a phase corresponding to reception timing of the command signal. The command decoder decodes the command signal in synchronization with the operating clock signal.
Abstract:
A memory system includes a memory controller and a memory. The memory controller selectively operates in a first mode and a second mode. In the first mode, the memory controller transmits a first command continuously during a plurality of clock cycles. In the second mode, the memory controller to mix a second command with the first command and transmit the mixture of the first command and the second command. The memory changes command latch timing depending on the first or second mode.
Abstract:
A memory device has a plurality of power rails, including: a first power rail for transmitting a high power voltage, a second power rail for transmitting a low power voltage, a third power rail for selectively receiving the high power voltage from the first power rail through a first dynamic voltage and frequency scaling (DVFS) switch and for selectively receiving the low power voltage from the second power rail through a second DVFS switch, a fourth power rail connected to a first power gating (PG) switch to selectively receive the high power voltage or the low power voltage from the third power rail, and a first circuit block connected to the fourth power rail to receive a power voltage to which the DVFS and PG are applied. When power gating is applied, supply of the power voltage to the fourth power rail is blocked.
Abstract:
A memory device includes a memory bank including a plurality of memory blocks, a row selection circuit and a refresh controller. The row selection circuit is configured to perform an access operation and a refresh operation with respect to the memory bank. The refresh controller is configured to control the row selection circuit such that the memory device is operated selectively in an access mode or a self-refresh mode in response to a self-refresh command received from a memory controller, the refresh operation is performed in the access mode in response to an active command received from the memory controller and the refresh operation is performed in the self-refresh mode in response to at least one clock signal.
Abstract:
A memory system includes a memory controller and a memory. The memory controller selectively operates in a first mode and a second mode. In the first mode, the memory controller transmits a first command continuously during a plurality of clock cycles. In the second mode, the memory controller to mix a second command with the first command and transmit the mixture of the first command and the second command. The memory changes command latch timing depending on the first or second mode.