Abstract:
Methods of fabricating a semiconductor package may include forming a first barrier layer on a first carrier, forming a sacrificial layer, including an opening that exposes at least a portion of the first barrier layer, on the first barrier layer, and forming a second barrier layer on the first barrier layer and on the sacrificial layer. The second barrier layer may include a portion formed on the sacrificial layer. The methods may also include forming a first insulating layer in the opening and protruding beyond a top surface of the portion of the second barrier layer on the sacrificial layer, a top surface of the first insulating layer being farther from the first barrier layer than the top surface of the portion of the second barrier layer, forming a redistribution structure including a redistribution layer and a second insulating layer on the first insulating layer and on the second barrier layer, mounting a semiconductor chip on the redistribution structure, attaching a second carrier onto the semiconductor chip and removing the first carrier, removing the first barrier layer, the sacrificial layer, and the second barrier layer to expose portions of the redistribution structure, and forming solder balls, respectively, on the portions of the redistribution structure.
Abstract:
A method for fabricating a semiconductor package, the method including: forming a release layer on a first carrier substrate, wherein the release layer includes a first portion and a second portion, wherein the first portion has a first thickness, and the second portion has a second thickness thicker than the first thickness; forming a barrier layer on the release layer; forming a redistribution layer on the barrier layer, wherein the redistribution layer includes wirings and an insulating layer; mounting a semiconductor chip on the redistribution layer; forming a molding layer on the redistribution layer to at least partially surround the semiconductor chip; attaching a second carrier substrate onto the molding layer; removing the first carrier substrate and the release layer; removing the barrier layer; and attaching a solder ball onto the redistribution layer exposed by removal of the barrier layer and the second portion of the release layer.
Abstract:
A connecting device is provided that includes a movable part contacting an external contact terminal, and an elastic part connected to the movable part and configured to provide an elastic force enabling movement of the movable part. The connecting device also includes a support connected to the elastic part, and at least one protecting wall connected to the support and configured to protect the movable part from external forces. The connecting device further includes an extension extending from the at least one protecting wall in a direction along which the movable part moves and configured to bring the movable part close to the external contact terminal, and a base part provided within the extension and configured to reinforce the support.
Abstract:
Three-dimensional (3D) semiconductor devices are provided. The 3D semiconductor device includes a plurality of dummy pillars penetrating each cell pad of an electrode structure and the electrode structure disposed under each cell pad. Insulating patterns of a mold stack structure for formation of the electrode structure may be supported by the plurality of dummy pillars, so transformation and contact of the insulating patterns may be minimized or prevented.
Abstract:
Provided are a double-sided adhesive tape, semiconductor packages, and methods of fabricating the packages. A method of fabricating semiconductor packages includes providing a double-sided adhesive tape on a top surface of a carrier, the double-sided adhesive tape including a first adhesive layer and a second adhesive layer stacked on the first adhesive layer, the first adhesive layer of the double-sided adhesive tape being in contact with the top surface of the carrier, adhering active surfaces of a plurality of semiconductor chips onto the second adhesive layer of the double-sided adhesive tape, separating the first adhesive layer from the second adhesive layer such that the second adhesive layer remains on the active surfaces of the semiconductor chips, patterning the second adhesive layer to form first openings that selectively expose the active surfaces of the semiconductor chips, and forming first conductive components on the second adhesive layer to fill the first openings.
Abstract:
A semiconductor package includes a first semiconductor chip including a first surface and a second surface which face each other, an alignment pattern formed on the first surface, a first redistribution layer arranged on the first surface of the first semiconductor chip, a second redistribution layer arranged on the second surface of the first semiconductor chip, and electrically connected with the semiconductor chip, and a first dielectric layer including the alignment pattern between the first redistribution layer and the semiconductor chip, the alignment pattern overlapping the first surface of the first semiconductor chip.
Abstract:
A semiconductor package having a redistribution structure including a first face and a second face and a first semiconductor chip mounted on the first face. The semiconductor package may further include a first redistribution pad exposed from the second face of the redistribution structure and a second redistribution pad exposed from the second face of the redistribution structure. The semiconductor package may further include a first solder ball being in contact with the first redistribution pad and a second solder ball being in contact with the second redistribution pad. In some embodiments, a first distance of the first redistribution pad is smaller than a second distance of the second redistribution pad, the first and second distances are measured with respect to a reference plane that intersects a lower portion of the first solder ball and a lower portion of the second solder ball.
Abstract:
A semiconductor package includes a first semiconductor chip including a first surface and a second surface which face each other, an alignment pattern formed on the first surface, a first redistribution layer arranged on the first surface of the first semiconductor chip, a second redistribution layer arranged on the second surface of the first semiconductor chip, and electrically connected with the semiconductor chip, and a first dielectric layer including the alignment pattern between the first redistribution layer and the semiconductor chip, the alignment pattern overlapping the first surface of the first semiconductor chip.
Abstract:
According to an embodiment of the present disclosure, a connecting device included in an electronic device may comprise a movable part including at least one contacting part, an elastic part extending from the movable part and including a plurality of bends alternately arranged to allow the movable part to move in a first direction, and a support extending from the elastic part. Other various embodiments are also possible.
Abstract:
Disclosed herein is an X-ray imaging apparatus having an improved structure which is configured for preventing an entrance of foreign materials. The X-ray imaging apparatus includes: an X-ray source configured to generate X-rays, and to irradiate the generated X-rays; an X-ray detector configured to detect the irradiated X-rays; and a first frame and a second frame coupled with each other to form an outer appearance of the X-ray detector. The first frame is tightly coupled with the second frame so that no gap exists between the first frame and the second frame in order to prevent a foreign material from entering the inside of the X-ray detector.