摘要:
In a horizontal-cavity vertical-emitting semiconductor laser including an Al-containing semiconductor layer, deterioration of light output property due to oxidization of the Al-containing semiconductor layer is suppressed. A lower cladding layer, an active layer, and an upper cladding layer are stacked in this order from the lower layer on a main surface of a substrate made of GaAs. The upper cladding layer is made of AlGaAs or AlGaInP containing Al in high concentration. An emitting plane layer combining a function of preventing the oxidization of Al contained in the upper cladding layer is formed on an upper portion of the upper cladding layer, and an electric contact layer is formed on an upper portion of the emitting plane layer. The emitting plane layer is made of InGaP, and the electric contact layer is made of GaAs.
摘要:
An optical integrated circuit having optical devices is fabricated. These optical devices must be biased in the mutually opposite directions. If such an optical integrated circuit is fabricated using a conductive semiconductor substrate as conventionally, it is not possible to drive the devices by a single power supply since the substrate side is shared as a common polarity by the devices. The present invention realizes a structure where both anode and cathode of each device can be isolated electrically by conventional process technology and provides an optical integrated circuit which can be driven by a single power supply.An optical integrated circuit is formed on a semi-insulative or insulative substrate. A high resistivity region which extends at least from the active layer to the substrate and includes part of an optical waveguide between the devices is formed so as to electrically isolate the anode and cathode of each integrated device from the other device.
摘要:
In a magnetic recording head including an optical waveguide for guiding a laser beam to a surface of a magnetic recording medium, a shield is provided in the vicinity of at least one portion changing discontinuously in structure of the optical waveguide to absorb or reflect non-propagating light leaking from the discontinuous portion to the outside of the optical waveguide.
摘要:
Provided is a thermal-assisted-magnetic-recording head capable of directing, to a magnetic recording medium, light in which the spot size is reduced to submicron order with high total optical propagation efficiency. A light coupling unit that guides light emitted from the light source into a magnetic head and a high-refractive-index core that couples with the light guided by the light coupling unit to lead the light to an air bearing surface are arranged in the magnetic head. The light coupling unit includes a plurality of thin-film-like cores that are separated from each other by a clad material. An upper part of the high-refractive-index core is placed between two thin-film-like cores.
摘要:
It is an objective that the optical loss and the number of optical components are reduced in an optical recording head using a near-field where a laser beam is guided from a light source to the tip of the head and a thermally assisted magnetic recording head. A structure where the traveling direction of emitted beam is rotated in the direction of the cavity of the laser diode element and a reflector for guiding the beam to the surface of the surface of the laser diode element is monolithically integrated in the laser diode element is mounted over the slider so that the direction of the cavity of the laser diode element is parallel to the surface of the recording medium, and the substrate side of the laser diode element is mounted to be in the direction opposite the face adjacent to the upper face of the slider.
摘要:
An optical integrated circuit having optical devices is fabricated. These optical devices must be biased in the mutually opposite directions. If such an optical integrated circuit is fabricated using a conductive semiconductor substrate as conventionally, it is not possible to drive the devices by a single power supply since the substrate side is shared as a common polarity by the devices. The present invention realizes a structure where both anode and cathode of each device can be isolated electrically by conventional process technology and provides an optical integrated circuit which can be driven by a single power supply. An optical integrated circuit is formed on a semi-insulative or insulative substrate. A high resistivity region which extends at least from the active layer to the substrate and includes part of an optical waveguide between the devices is formed so as to electrically isolate the anode and cathode of each integrated device from the other device.
摘要:
A thermally assisted magnetic recording head includes a flying slider, a magnetic field generation device mounted on the flying slider, a first waveguide disposed near the magnetic field generation device for guiding incident light from a top surface of the flying slider on a side of the flying slider toward an air bearing bottom surface of the flying slider, an optical near-field generator disposed at an emission end of the first waveguide, a second waveguide which is separate from the first waveguide and which is spaced from and coupled to the first waveguide at a distance of no greater than a light wavelength, and a first optical detector for detecting the intensity of light propagating in the second waveguide. The first waveguide and the second waveguide are disposed so as to extend in a direction substantially perpendicular to the air bearing bottom surface of the flying slider.
摘要:
A second waveguide is formed near a first waveguide for guiding light to the vicinity of a main pole of a thermally assisted magnetic recording head, and a portion of light propagated through the waveguide 1 is branched to the second waveguide. The light transmitting in the second waveguide is detected by a photodetector to detect an intensity of the light propagated through the first waveguide. In the magnetic recording apparatus, an intensity of a semiconductor laser is decreased when an amount of light incident to the photodetector is large and the intensity of the semiconductor laser is increased when the amount of light incident to the photodetector is small. By constituting a feedback loop as described above, the intensity of the light propagated through the first waveguide is kept constant.
摘要:
A second waveguide is formed near a first waveguide for guiding light to the vicinity of a main pole of a thermally assisted magnetic recording head, and a portion of light propagated through the waveguide 1 is branched to the second waveguide. The light transmitting in the second waveguide is detected by a photodetector to detect an intensity of the light propagated through the first waveguide. In the magnetic recording apparatus, an intensity of a semiconductor laser is decreased when an amount of light incident to the photodetector is large and the intensity of the semiconductor laser is increased when the amount of light incident to the photodetector is small. By constituting a feedback loop as described above, the intensity of the light propagated through the first waveguide is kept constant.
摘要:
A module for optical communication intended for decreasing the consumption power of a modulator integrated laser, in which a, multiple-quantum well constituting a laser active layer region comprises InGaAlAs/InGaNAs to keep the reliability and optical power level even when a chip is kept at a high temperature, and the difference of wavelength between the oscillation wavelength and the band gap wavelength of the modulator and the laser should be made greater in proportion with the elevation of the chip setting temperature for maintaining the transmission performance, by which the temperature difference between the module case temperature and the chip setting temperature is reduced to decrease the module consumption power.