Abstract:
The invention provides a manufacturing method of a low temperature polysilicon thin film transistor, including: providing a substrate; forming a buffer layer on the substrate; simultaneously forming a polysilicon layer and a photoresist layer on the buffer layer; implanting ions into a source region and a drain region; removing the photoresist layer; forming an insulating layer on the polysilicon layer; forming a gate electrode on the insulating layer; and forming a passivation layer on the insulating layer. The passivation layer covers the gate electrode. The invention can only use one time of mask process and one time of ion implantation process to complete the manufacturing processing of the polysilicon layer, the manufacturing process can be simplified and therefore the cost of process is reduced and the productivity is improved.
Abstract:
The present invention provides a liquid crystal display and a shift register thereof. Each shift register unit of the shift register comprises a storage circuit, receiving and temporarily storing a former stage signal, a voltage level control circuit and an inverter circuit, charging and discharging scan lines of a liquid crystal display panel, and a first node exists between the voltage level control circuit and the inverter circuit, and a second node exists between the storage circuit and the voltage level control circuit, and the storage circuit is employed to selectively invert and output received level signals to the second node under control of a first sequence signal, and the voltage level control circuit is employed to provide a low level signal to the first node, and the inverter circuit is employed to selectively invert and output the low level signal provided by the voltage level control circuit under control of a second sequence signal. With the aforementioned arrangement, the present is beneficial to the narrow frame or non frame design of the liquid crystal display panel and promote the process yield.
Abstract:
The present invention discloses a shift register unit, employed for providing a gate voltage to a nth pixel of a liquid crystal display, and comprising first to third P-type transistors, and gates of the first, second P-type transistors respectively receive gate voltages of n−2th, n−2th pixels, and first end of the first, second P-type transistors respectively receive first and second input signals, and both second ends of the first and second P-type transistors are coupled to a gate of the third P-type transistor; the gate voltages of the n−2th, n−2th pixels are respectively employed to control on-off of the first and second P-type transistors, and to make the first input signal on-off the third P-type transistor; n is a nature number larger than 2; a first end of the third P-type transistor is coupled to a first clock signal or a second clock signal, and a second end is employed as being a voltage output end to be coupled to the nth pixel. The present invention can diminish the dimension of the frame of liquid crystal display. The present invention also provides a gate driving circuit and a liquid crystal display.
Abstract:
The disclosure is related to a touch panel including a substrate; a low-temperature poly-silicon layer, a first isolating layer, a gate and a second isolating layer arranged in sequence and disposed on a surface of the substrate; a source and a drain disposed on the second isolating layer, the source and the drain disposed separately and respectively connected to the low-temperature poly-silicon layer through a through hole; a planar layer disposed on the source, the drain and the second isolating layer, the planar layer having a first via corresponding to the drain; a filling part filling the first via and the filling part electrically connected to the drain; a third isolating layer disposed on the planar layer, the third isolating layer having a second via corresponding to the filling part; a pixel electrode disposed on the third isolating layer and electrically connected to the filling part through the second via.
Abstract:
The present invention provides a liquid crystal display and a shift register thereof. Each shift register unit of the shift register comprises a storage circuit, receiving and temporarily storing a former stage signal, a voltage level control circuit and an inverter circuit, charging and discharging scan lines of a liquid crystal display panel, and a first node exists between the voltage level control circuit and the inverter circuit, and a second node exists between the storage circuit and the voltage level control circuit, and the storage circuit is employed to selectively invert and output received level signals to the second node under control of a first sequence signal, and the voltage level control circuit is employed to provide a low level signal to the first node, and the inverter circuit is employed to selectively invert and output the low level signal provided by the voltage level control circuit under control of a second sequence signal. With the aforementioned arrangement, the present is beneficial to the narrow frame or non frame design of the liquid crystal display panel and promote the process yield.
Abstract:
The present invention discloses an array substrate. The data line repair structure of the array substrate includes repair line, control line and a plurality of switch elements. One end of each data line is connected to shorting bar during shorting bar test stage, and the other end is connected to the repair line through a switch element. The control terminal of switch element is connected to control line, input terminal is connected to one end of repair line and the output terminal is connected to a data line. The other end of the repair line is connected to shorting bar during shorting bar test stage. The present invention further discloses a PSVA liquid crystal display panel and manufacturing method thereof. As such, the present invention can improve PSVA process yield rate.
Abstract:
The present invention discloses a liquid crystal display panel, which has a scan line, a data line, a switch unit, liquid crystal molecules, and a pixel domain. The scan line and the data line are electrically connected to the switch unit. The liquid crystal display panel comprises: a pixel electrode disposed in the pixel domain, the pixel electrode being electrically connected to the switch unit; and a conductive electrode layer disposed below a peripheral region of the pixel electrode, the conductive electrode layer and the pixel electrode being separated by an insulating layer, wherein the conductive electrode layer is used to supply a voltage for forming pre-tilt angles of the liquid crystal molecules. The liquid crystal panel can solve the problem of non-uniform brightness of the display panel or dark lines occurred on said panel.