Abstract:
The present invention provides a vertical alignment liquid crystal display and a manufacture method thereof. The vertical alignment liquid crystal display comprises a first substrate (1), a second substrate (2), a liquid crystal layer (3) located between the first substrate (1) and the second substrate (2), a first and a second passivation layers (11, 21) respectively located at inner sides of the first and the second substrates (1, 2), a common electrode layer (12) and a pixel electrode layer (22) respectively located on the first and the second passivation layers (11, 21); the liquid crystal layer (3) comprises liquid crystal molecules (30), auxiliary alignment agent (31) and a polymer network (33) penetrating the entire liquid crystal layer (3); the auxiliary alignment agent (31) makes the liquid crystal molecules (30) in the liquid crystal layer (3) vertically aligned on the surfaces of the first and the second substrates (1, 2); the polymer network (33) stabilizes alignment of the liquid crystal molecules (30) and enhances vertical alignment effect of the auxiliary alignment agent (31) to the liquid crystal molecules (30).
Abstract:
A flexible liquid crystal panel includes a first and a second flexible substrates opposite to each other, a first and a second flat layers arranged on inner sides of the first and second flexible substrates respectively, a color filter layer arranged between the second flexible substrate and the second flat layer, a spacing retaining wall formed on the second flat layer, seal glue coated on a side of the spacing retaining wall adjacent to the first flexible substrate, and liquid crystal filled between the first and second flat layers. The spacing retaining wall includes a plurality of transverse parts parallel with one another and extending transversely and a plurality of longitudinal parts parallel with one another and extending longitudinally. The transverse parts and the longitudinal parts intersect one another to separate a plurality of sub pixels and define and delimit closed areas in which the liquid crystal is filled.
Abstract:
The present invention provides a pixel structure and a liquid crystal display panel including the pixel structure. The pixel structure includes a plurality of pixel units (1) arranged in an array. Each of the pixel units (1) includes a red sub-pixel (11), a green sub-pixel (12), and a blue sub-pixel (13) that are arranged in the form of a window sash. The red sub-pixel (11) and the blue sub-pixel (13) are arranged in a row in a vertical direction. The green sub-pixel (12) is individually arranged in a row. A surface area of the green sub-pixel (12) is greater than or equal to the sum of surface areas of the red sub-pixel (11) and the blue sub-pixel (13). A black matrix (4) is arranged along outer circumferences of the red sub-pixel (11), the green sub-pixel (12), and the blue sub-pixel (13). The pixel structure reduces the area occupied by the black matrix (4), expands the surface area of the green sub-pixel (12), increases aperture ratio and light transmittance, and enhances displaying performance.
Abstract:
The invention provide a manufacturing method for producing conductive adhesive with spherical graphene, and the steps comprise as following: step 1: preparing monomer, initiator, a dispersing agent and solvent to manufacture a monomer compound, and use the monomer compound to produce polymer micro ball; step 2: heating pre-treatment or plasma etching pre-treatment to the said polymer micro ball; step3: by chemical vapor deposition, the polymer micro ball after pre-treatment from step 2 to grow graphene outside surfaces or inside polymer micro ball, and then obtain the spherical graphene; step 4: producing epoxy gel system made by epoxy, hardener and accelerant with a certain ratio mixing homogeneously; step 5: dispersing the spherical graphene from step 3 into the epoxy gel system to produce pre-material of conductive adhesive of spherical graphene; Step 6: deforming the pre-material of conductive adhesive of spherical graphene, and then obtain conductive adhesive of spherical graphene.
Abstract:
The present invention provides a method of defining poly-silicon growth direction, comprising: providing a glass substrate (1); forming a buffer layer (3) on the glass substrate (1); forming a metal film layer (5) on the buffer layer (3); implementing etching to the metal film layer (5) to form a metal film array (51); covering the buffer layer (3) with a high-purity quartz mask (7); forming a graphene layer (9) on the high-purity quartz mask (7) and the metal film array (51); implementing etching to the graphene layer (9) to form a graphene layer array (91); forming an amorphous silicon thin film (2) on the buffer layer (3); implementing high temperature dehydrogenation to the amorphous silicon thin film (2); implementing an Excimer laser anneal process to the amorphous silicon thin film (2); melted amorphous silicon is re-crystallized.
Abstract:
The present invention provides a method of manufacturing conductive film and the conductive film itself. The method of manufacturing conductive film comprises the following steps: step 1 for preparing a graphene oxide; step 2 for providing a functional reagent to reacting with the graphene oxide for producing a functionalized graphene; step 3 for providing a curing agent and an organic solvent to mix with a certain amount of conductive particles, and then processed by an ultrasonic to produce a conductive particle dispersion liquid; the conductive particles are the functionalized graphene or a mixture of the functionalized graphene and other conductive particle; step 4 for providing an adhesive resin and diluting the adhesive resin with the organic solvent in the step 3; step 5 for mixing the adhesive resin diluted in the step 4 and the conductive particle dispersion liquid to produce a conductive film pre-mixture, and the conductive film pre-mixture is stirred repeatedly to be well mixed, and, after dispersed by the ultrasonic, the organic solvent is removed to produce a conductive film.