摘要:
An optical system, such as an integrated monolithic optical bench, includes a three-dimensional curved optical element etched in a substrate such that the optical axis of the optical system lies within the substrate and is parallel to the plane of the substrate.
摘要:
Aspects relate to a compact material analyzer including a light source, a detector, and a module including a first optical window on a first side of the module, a second optical window on a second side of the module opposite the first side, and a light modulator. The light source produces input light at a high power that is passed through the first optical window to the light modulator. The light modulator is configured to attenuate the input light, produce modulated light based on the input light, and direct the modulated light through the second optical window to the sample. The modulated light produced by the light modulator is at a lower power safe for the sample. The detector is configured to receive output light from the sample produced from interaction with the modulated light through the second optical window and to detect a spectrum of the output light.
摘要:
Aspects relate to on-line compensation of instrumental drifts in miniaturized spectrometers due to variations in environmental conditions and due to other sources of instrumental drift. The spectrometer may include a light modulator, a detector, and a processor. The spectrometer may further include a sensor configured to obtain a value of a condition contributing to instrumental drifts in the spectrometer. The processor may be configured to extract a set of correction parameters from a correction matrix associating a plurality of sets of correction parameters with sensor values based on the value and to apply the set of correction parameters to an output of the detector to produce a corrected spectrum of a sample under test. The correction matrix may be generated for the spectrometer or may be based on a global correction matrix fitted to the spectrometer.
摘要:
Aspects relate to a spectroscopic analyzer device that can be used for biological sample detection, and specifically for virus infection detection. The spectroscopic analyzer device includes a spectrometer, such as a micro-electro-mechanical systems (MEMS) based infrared spectrometer, and an artificial intelligence (AI) for screening of viral samples. In addition, the spectroscopic analyzer device includes a light source and a disposable optical component configured to receive a sample and to facilitate light interaction with the sample.
摘要:
Aspects relate to a compact material analyzer including a light source, a detector, and a module including a first optical window on a first side of the module, a second optical window on a second side of the module opposite the first side, and a light modulator. The light source produces input light at a high power that is passed through the first optical window to the light modulator. The light modulator is configured to attenuate the input light, produce modulated light based on the input light, and direct the modulated light through the second optical window to the sample. The modulated light produced by the light modulator is at a lower power safe for the sample. The detector is configured to receive output light from the sample produced from interaction with the modulated light through the second optical window and to detect a spectrum of the output light.
摘要:
Aspects relate to a miniaturized gas cell that may be implemented into an integrated device for gas analysis. The miniaturized gas cell may be a multi-pass gas cell or a hollow waveguide gas cell. In some aspects, the miniaturized gas cell may include a bottom surface and sidewalls formed in a substrate (e.g., a silicon substrate or silicon on insulator (SOI) substrate). The gas cell further includes at least one gas inlet and at least one gas outlet coupled for injection of a gas into and out of the gas cell, respectively. In addition, the gas cell further includes an optical input and an optical output, each optically coupled to direct light into and out of the gas cell, respectively. In addition, a capping layer may be bonded to the substrate to form a top surface of the gas cell.
摘要:
Aspects of the disclosure relate to an integrated spectral unit including a micro-electro-mechanical systems (MEMS) interferometer fabricated within a first substrate and a light redirecting structure integrated on a second substrate, where the second substrate is coupled to the first substrate. The light redirecting structure includes at least one mirror for receiving an input light beam propagating in an out-of-plane direction with respect to the first substrate and redirecting the input light beam to an in-plane direction with respect to the first substrate towards the MEMS interferometer.
摘要:
A spectrometer with increased optical throughput and/or spectral resolution includes a plurality of interferometers coupled in parallel. An optical splitter divides a source light beam into a plurality of input beams and directs each of the input beams to a respective one of the plurality of interferometers. One or more detectors are optically coupled to receive a respective output from each of the plurality of interferometers and is configured to detect an interferogram produced as a result of the outputs.
摘要:
A micro-optical bench device is fabricated by a process that provides control over one or more properties of the micro-optical bench device and/or one or more properties of optical surfaces in the micro-optical bench device. The process includes etching a substrate to form a permanent structure including optical elements and a temporary structure. The shape of the temporary structure and gaps between the temporary structure and permanent structure facilitate control of a property of the micro-optical bench and/or optical surfaces therein. The process further includes removing the temporary structure from an optical path of the micro-optical bench device.
摘要:
Optical systems with aspherical optical elements are described. The aspherical optical elements have surfaces in which the in-plane radius of curvature spatially varies and the in-plane cross section surface profile is characterized in that the multiplication of the cosine of the incidence angle raised to a non-zero exponent by the in-plane radius of curvature varies less than twenty percent between any two points on the in-plane cross section surface profile.