摘要:
Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, or cortical stimulation many purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. By applying the right amount of heat to a completed array, a curve can be induced. With a thermoplastic polymer it may be further advantageous to repeatedly heat the flexible circuit in multiple molds, each with a decreasing radius. Further, it is advantageous to add material along the edges. It is further advantageous to provide a fold or twist in the flexible circuit array. Additional material may be added inside and outside the fold to promote a good seal with tissue.
摘要:
Disclosed herein are substrates for cell delivery to target tissues requiring treatment for various diseases that induce cell death, damage or loss of function. The substrates are configured to provide seeded cells, including stem cells, with a structural support that allows interconnection with and transmission of biological signals between the cells and the target tissue.
摘要:
Disclosed herein are instruments and methods for delivery of substrates, including cell-seeded substrates, to target tissues requiring treatment for various diseases that induce cell death, damage or loss of function. The substrates are configured to provide cells, including stem cells, with a structural support that allows interconnection with and transmission of biological signals between the cells and the target tissue.
摘要:
A device includes a handpiece having a probe tip disposed at an end thereof, and, connected to the handpiece such that, at the probe tip, a functionality of each is provided, a plurality of probes. The probes may include an optical coherence tomography (OCT) probe, an endoillumination probe, a laser therapy probe, an ultrasound imaging probe, an electrocautery probe, an RF ablation probe, a cryosurgical probe, an irrigator, and/or a mechanical probe.
摘要:
An implanted parylene tube shunt relieves intra-ocular pressure. The device is implanted with an open end in the anterior chamber of the eye, allowing excess fluid to be drained through the tube out of the eye. In one embodiment, only a first end of the tube implanted into the anterior chamber of the eye is open. Intra-ocular pressure (IOP) is then monitored, for example utilizing an implanted sensor. When IOP exceeds a critical valve, a practitioner intervenes, puncturing with a laser a thinned region of the tube lying outside the eye, thereby initiating drainage of fluid and relieving pressure. In accordance with alternative embodiments, the both ends of the tube are open, and the tube includes a one-way valve configured to permit drainage where IOP exceeds the critical value. The tube may include projecting barbs to anchor the tube in the eye without the need for sutures.
摘要:
An imaging probe may utilize a suitably shaped lens structure to deflect light off-axis, allowing for the acquisition of B-scans by rotary or reciprocating motion of the lens.
摘要:
A tool for refilling an implantable pump having at least one reservoir. The tool includes a plurality of independent fluid channels; a fluid reservoir in fluid communication with a first one of the fluid channels; at least one pump fluidly coupled to the fluid channels, the at least one pump and the independent fluid channels differing from each other in number, wherein (i) a pump is configured to apply positive pressure to the first fluid channel so as to drive fluid from the fluid reservoir therethrough, and (ii) a pump is configured to apply negative pressure to the second fluid channel; and a connector for removably connecting the fluid channels to the at least one reservoir.
摘要:
An implanted parylene tube shunt relieves intra-ocular pressure. The device is implanted with an open end in the anterior chamber of the eye, allowing excess fluid to be drained through the tube out of the eye. In one embodiment, only a first end of the tube implanted into the anterior chamber of the eye is open. Intra-ocular pressure (IOP) is then monitored, for example utilizing an implanted sensor. When IOP exceeds a critical value, a practitioner intervenes, puncturing with a laser a thinned region of the tube lying outside the eye, thereby initiating drainage of fluid and relieving pressure. In accordance with alternative embodiments, the both ends of the tube are open, and the tube includes a one-way valve configured to permit drainage where IOP exceeds the critical value. The tube may include projecting barbs to anchor the tube in the eye without the need for sutures.
摘要:
Embodiments of an implantable electrolytic pump include a first expandable diaphragm and a second flexible diaphragm, and first and second chambers each for containing a fluid, wherein the first expandable diaphragm separates the first and second chambers and provides a fluid barrier therebetween, and the second chamber is formed between the first expandable diaphragm and the second flexible diaphragms. The pump may further include electrolysis electrodes within the first chamber for causing generation of a gas therein and to thereby expand the expandable diaphragm so that fluid is forced from the second chamber into a cannula.
摘要:
A wide-filed retinal prosthesis enables an increased field of vision with a relatively small scleral incision. The retinal prosthesis includes a flexible substrate comprising a central member and at least one wing, with an array of electrodes disposed therein that are configured to stimulate the central and peripheral nerves of the retina.