Abstract:
A semiconductor package having electrical connecting structures includes: a conductive layer having a die pad and traces surrounding the die pad; a chip; bonding wires; an encapsulant with a plurality of cavities having a depth greater than the thickness of the die pad and traces for embedding the die pad and the traces therein, and the cavities exposing the die pad and the traces; a solder mask layer formed in the cavities and having a plurality of openings for exposing the trace ends and a portion of the die pad; and solder balls formed in the openings and electrically connected to the trace ends. Engaging the solder mask layer with the encapsulant enhances adhesion strength of the solder mask layer so as to prolong the moisture permeation path and enhance package reliability.
Abstract:
A semiconductor package structure includes: a dielectric layer; a metal layer disposed on the dielectric layer and having a die pad and traces, the traces each including a trace body, a bond pad extending to the periphery of the die pad, and an opposite trace end; metal pillars penetrating the dielectric layer with one ends thereof connecting to the die pad and the trace ends while the other ends thereof protruding from the dielectric layer; a semiconductor chip mounted on the die pad and electrically connected to the bond pads through bonding wires; and an encapsulant covering the semiconductor chip, the bonding wires, the metal layer, and the dielectric layer. The invention is characterized by disposing traces with bond pads close to the die pad to shorten bonding wires and forming metal pillars protruding from the dielectric layer to avoid solder bridging encountered in prior techniques.
Abstract:
A method for fabricating a carrier-free semiconductor package includes: half-etching a metal carrier to form a plurality of recess grooves and a plurality of metal studs each serving in position as a solder pad or a die pad; filing each of the recess grooves with a first encapsulant; forming on the metal studs an antioxidant layer such as a silver plating layer or an organic solderable protection layer; and performing die-bonding, wire-bonding and molding processes respectively to form a second encapsulant encapsulating the chip. The recess grooves are filled with the first encapsulant to enhance the adhesion between the first encapsulant and the metal carrier, thereby solving the conventional problem of having a weak and pliable copper plate and avoiding transportation difficulty. The invention eliminates the use of costly metals as an etching resist layer to reduce fabrication cost, and further allows conductive traces to be flexibly disposed on the metal carrier to enhance electrical connection quality.
Abstract:
A semiconductor package structure includes: a dielectric layer; a metal layer disposed on the dielectric layer and having a die pad and traces, the traces each including a trace body, a bond pad extending to the periphery of the die pad, and an opposite trace end; metal pillars penetrating the dielectric layer with one ends thereof connecting to the die pad and the trace ends while the other ends thereof protruding from the dielectric layer; a semiconductor chip mounted on the die pad and electrically connected to the bond pads through bonding wires; and an encapsulant covering the semiconductor chip, the bonding wires, the metal layer, and the dielectric layer. The invention is characterized by disposing traces with bond pads close to the die pad to shorten bonding wires and forming metal pillars protruding from the dielectric layer to avoid solder bridging encountered in prior techniques.
Abstract:
A semiconductor package having electrical connecting structures includes: a conductive layer having a die pad and traces surrounding the die pad; a chip; bonding wires; an encapsulant with a plurality of cavities having a depth greater than the thickness of the die pad and traces for embedding the die pad and the traces therein, and the cavities exposing the die pad and the traces; a solder mask layer formed in the cavities and having a plurality of openings for exposing the trace ends and a portion of the die pad; and solder balls formed in the openings and electrically connected to the trace ends. Engaging the solder mask layer with the encapsulant enhances adhesion strength of the solder mask layer so as to prolong the moisture permeation path and enhance package reliability.
Abstract:
A semiconductor package having electrical connecting structures includes: a conductive layer having a die pad and traces surrounding the die pad; a chip; bonding wires; an encapsulant with a plurality of cavities having a depth greater than the thickness of the die pad and traces for embedding the die pad and the traces therein, and the cavities exposing the die pad and the traces; a solder mask layer formed in the cavities and having a plurality of openings for exposing the trace ends and a portion of the die pad; and solder balls formed in the openings and electrically connected to the trace ends. Engaging the solder mask layer with the encapsulant enhances adhesion strength of the solder mask layer so as to prolong the moisture permeation path and enhance package reliability.