Abstract:
Systems and methods for transferring solar cells while maintaining a controlled micro-environment are provided. In particular, such systems provide automated loading and unloading of solar cells by use of a conveyor and elevator within a tank receptacle sealingly connected with a solar cell carrying pods and a flow tube of solar cell components in a solar cell fabrication process. The tank receptacle can include one or more ports for sealingly and operably coupling with a cover of a solar cell carrying pod, each port having an elevator for withdrawing a removable base of the pod along with a solar cell carrying cassette into the tank and a conveyor to facilitate loading and/or unloading of solar cells with the cassette by coordinated movement of the elevator and conveyor. Such systems can further include a robotic arm having a gripper and nozzle to maintain a micro-environment within the pod during transport.
Abstract:
One embodiment of the invention provides an apparatus for dispensing conductive paste on photovoltaic structures during manufacturing of a solar panel. The apparatus includes a cartridge for holding the conductive paste, a jet-dispensing module coupled to the cartridge, and a robotic arm coupled to the jet-dispensing module. The jet-dispensing module is configured to dispense a predetermined amount of the conductive paste on busbars of a respective photovoltaic structure in a non-contact manner, and the robotic arm is configured to adjust a position of the jet-dispensing module, thereby facilitating alignments between the jet-dispensing module and the busbars of the photovoltaic structure.
Abstract:
A photovoltaic module can be constructed from one or more strings, with each of the strings being constructed from a plurality of cascaded solar cells. A connector can electrically connect the strings to one another. The connector can include strain relief connectors that extend between the connector and the strings to help reduce effects caused by thermal expansion.
Abstract:
A photovoltaic module can be constructed from one or more strings, with each of the strings being constructed from a plurality of cascaded solar cells. A connector can electrically connect the strings to one another. The connector can include strain relief connectors that extend between the connector and the strings to help reduce effects caused by thermal expansion.
Abstract:
Devices and methods for transferring solar cells while maintaining a controlled environment are provided. Such devices can include a solar cell carrying pod adapted to support and maintain a stack of solar cells within a sealed micro-environment of inert gas. The solar cell carrying pod can further allow for ready removal of a solar cell carrier to facilitate automated transport of solar cells. The solar cell carrying pod can include a cover adapted to receive a solar cell carrier cassette securely mounted on a base that is sealably coupled with the cover to maintain solar cells within the carrier cassette in a sealed micro-environment for an extended period of time. The base can include a collet-operated gear train to facilitate unlocking and removal of the base from the cover in an automated process to facilitate large-scale solar cell fabrication.
Abstract:
One embodiment of the invention provides an apparatus for dispensing conductive paste on photovoltaic structures during manufacturing of a solar panel. The apparatus includes a cartridge for holding the conductive paste, a jet-dispensing module coupled to the cartridge, and a robotic arm coupled to the jet-dispensing module. The jet-dispensing module is configured to dispense a predetermined amount of the conductive paste on busbars of a respective photovoltaic structure in a non-contact manner, and the robotic arm is configured to adjust a position of the jet-dispensing module, thereby facilitating alignments between the jet-dispensing module and the busbars of the photovoltaic structure.
Abstract:
A system for scribing a photovoltaic structure is provided. During operation, a conveyor can move a photovoltaic structure along a path, and a scribing apparatus is directed toward that path to scribe a groove of a predetermined depth. In one embodiment, the groove does not penetrate an interface between a base layer and an emitter layer of the photovoltaic structure.
Abstract:
A cleaving system and method are described. The system can include a holding apparatus to retain a photovoltaic structure at a center section of a cleaving platform. The system can further include a contact apparatus to make contact with the photovoltaic structure and separate it into a plurality of strips. During operation, the system can activate an actuator to move the contact apparatus against the photovoltaic structure, thereby separating the photovoltaic structure into strips.
Abstract:
Devices and methods for transferring solar cells while maintaining a controlled environment are provided. Such devices include a solar cell carrying cassette adapted to support a stack of solar cells within a solar cell carrying pod that maintains a sealed micro-environment of inert gas and allows for automated transfer of solar cells between the pod and a fabrication line. The solar cell carrying cassette includes a pair of end plates and a plurality of rods extending therebetween that are configured to support a stack of solar cells. An identifier, such as an RFID chip, is included in each of the pair of end plates so as to allow for ready identification of the cassette from a single location relative the pod, while the cassette is coupled within the pod, regardless of the orientation of the cassette within the pod.
Abstract:
A system for processing solar cells is disclosed which includes a separation module for separating a processing frame from solar cells that are fed along a conveyance line. The processing frame can be separated without requiring manual lifting of the processing frame by feeding the processing frame and solar cells into a magnetic roller system. The magnetic roller system can gradually lift the processing frame away from the solar cells and divert the processing frame to a separate roller system. The solar cells can remain on the main conveyance line for further processing.