摘要:
In a method for preparing and/or coating the surfaces of metallic hollow structural elements that have at least two connection openings between their outer and inner surfaces, first and second reaction gas mixtures (I, II) are prepared by reaction gas sources for treating the outer and inner surfaces of the hollow structural elements. The first reaction gas mixture (I) is guided over the outer surfaces and thereafter over the inner surfaces of the structural elements, and then the second reaction gas mixture (II) is guided over the inner surfaces and thereafter over the outer surfaces of the structural elements. An apparatus for carrying out the method includes a reaction vessel enclosing an outer reaction space, a central holding pipe arranged in the reaction vessel and enclosing an inner space, and hollow support arms removably attached on the holding pipe to extend radially outwardly therefrom. Each structural element is mounted on a hollow support arm so that one of the connection openings communicates with the inner space through the hollow support arm and the other one of the connection openings communicates with the outer reaction space.
摘要:
A method for the powder pack coating of hollow structural components is performed with spherical powder particles of a donor metal in which the hollow component is embedded. During the embedding, the component is subjected to a tumbling motion about several spatial axes to fill all cavities in the component. After the powder pack coating process the cavities of the component are cleared of any excess powder particles under the action of a gas stream. This method is suitable especially for coating engine blades having cooling ducts and cooling air holes, such as turbine blades. The effect of the forced air flow through the internal cavities for the removal of excess powder out of the hollow component is enhanced by simultaneously vibrating the component.
摘要:
A turbine blade of a gas turbine is disclosed. The turbine blade includes a blade pan, a blade root, and a platform positioned between the blade pan and the blade root. The turbine blade is provided with an anti-corrosion coating at least in regions, in particular on a lower side of the platform and/or in the transition region between the lower side of the platform and the blade root. The anti-corrosion coating is a diffusion coating having a chromium content in the surface region of more than 30% by weight.
摘要:
A component having a corrosion-resistant and/or oxidation-resistant coating is provided that includes at least one platinum-aluminum substrate area is provided, the component having a substrate surface (11) and a substrate composition based on nickel, with a platinum-aluminum substrate area (12) formed in the area of the substrate surface of the component by precipitating platinum (Pt) and aluminum (Al) on the substrate surface. The platinum-aluminum substrate area (12) has a two-phase structure or duplex structure with finely dispersed platinum-aluminum deposits in a nickel-based mixed crystal in an outer zone (13), and a single-phase structure made of a nickel-based mixed crystal in an inner zone (14) located between the substrate surface (11) of the component and the outer zone (13).
摘要:
Inner and outer surfaces of structural components are aluminized by an aluminum gas diffusion process. For this purpose a gas mixture of a halogenous gas, aluminum monohalide gas, hydrogen, and negligible proportions of aluminum trihalide gas is caused to flow over the outer and inner surfaces of the component to be coated. The process is performed in a vessel in which at least two different temperature zones are maintained for keeping one or more aluminum sources at a higher temperature than the component to be coated. Especially gas turbine engine blades are protected against oxidation and corrosion by the so formed aluminum diffusion coatings on outer and inner surfaces of the blades.
摘要:
Device for the differential cooling or temperature control of inside and outside walls or wall areas of a component, more particularly of a turbomachine component. The device has nozzle arrays or spray pipes under locally separate and/or phased control for the admission of thermally controlled medium. Use of various media and differential temperatures and pressures. Transportation of the component from treatment station to treatment station in its passage.
摘要:
In a method for coating workpieces with a coating material by a gas phase diffusion coating process, the coating material is conveyed in the form of a metal halide compound from a coating material source (9A, 9B, 9C) to the workpiece (7) by means of a metal halide gas circulation flow (F). The gas circulation flow (F) is physically induced due to convection by establishing a temperature gradient between the workpiece (7) and the coating material source (9A, 9B, 9C), and is reinforced by the chemical reactions taking place. An apparatus for carrying out a gas phase diffusion process includes a reaction vessel (3) enclosing a reaction chamber (1) in which the workpiece (7) is arranged. The apparatus further includes a metal halide generator (9A, 9B, 9C) arranged in the reaction chamber (1), and a heater (5) as well as a cooling device (6) and a thermal conduction arrangement (8) for establishing a temperature gradient between the workpiece (7) and the metal halide generator (9A, 9B, 9C). The method and apparatus produce a diffusion coating having a uniform thickness and a high quality smooth surface, even on large workpiece surfaces.
摘要:
A component made of an intermetallic compound of titanium and aluminum, or of alloys of such intermetallic compounds with alloying additions forming the base material, and with an aluminum diffusion coating on the base material, is provided. The component has, between the base material and the aluminum diffusion coating, a closed zone which is close to the surface and has a recrystallization structure. For this purpose, the component is cold-formed or slightly melted in a zone which is close to the surface, is then annealed at the recrystallization temperature, and finally has an aluminum diffusion coating applied to the recrystallized zone. The process is used for components in engines and, particularly, for components in the hot-gas duct of an engine.
摘要:
Inner and outer surfaces of structural components are aluminized by an aluminum gas diffusion process. For this purpose a gas mixture of a halogenous gas, aluminum monohalide gas, hydrogen, and negligible proportions of aluminum trihalide gas is caused to flow over the outer and inner surfaces of the component to be coated. The process is performed in a vessel in which at least two different temperature zones are maintained for keeping one or more aluminum sources at a higher temperature than the component to be coated. Especially gas turbine engine blades are protected against oxidation and corrosion by the so formed aluminum diffusion coatings on outer and inner surfaces of the blades.
摘要:
In a method for production of a corrosion resistant and/or oxidation resistant coating, at least one metal of the platinum group or an alloy thereof is galvanically deposited onto a surface of a substrate, and thereafter the thusly galvanically coated substrate is aluminized. In a first stage of the galvanic deposition process a current magnitude applied for the galvanizing is increased continuously or step-wise beginning from an initial value up to a maximum value, and in a second stage of the galvanic deposition process the current magnitude applied for the galvanizing is maintained constant at the maximum value. The galvanic deposition of the or each metal of the platinum group or the corresponding alloy may be carried out using an open-celled or open-mesh or porous anode.