摘要:
Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated and oxidized, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein as starting materials, at least one pulverulent metal and at least one metal compound, the metal and the metal component of the metal compound being different and the proportion of metal being at least 80% by weight based on the sum of metal and metal component from metal compound, together with one or more combustion gases, are fed to an evaporation zone of a reactor, where metal and metal compound are evaporated completely under nonoxidizing conditions, subsequently, the mixture flowing out of the evaporation zone is reacted in the oxidation zone of this reactor with a stream of a supplied oxygen-containing gas whose oxygen content is at least sufficient to oxidize the starting materials and combustion gases completely.
摘要:
Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated and oxidized, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein as starting materials, at least one pulverulent metal and at least one metal compound, the metal and the metal component of the metal compound being different and the proportion of metal being at least 80% by weight based on the sum of metal and metal component from metal compound, together with one or more combustion gases, are fed to an evaporation zone of a reactor, where metal and metal compound are evaporated completely under nonoxidizing conditions, subsequently, the mixture flowing out of the evaporation zone is reacted in the oxidation zone of this reactor with a stream of a supplied oxygen-containing gas whose oxygen content is at least sufficient to oxidize the starting materials and combustion gases completely.
摘要:
Process for preparing a metal oxide powder, in which starting materials are evaporated and oxidized, wherein a metal melt in the form of droplets and one or more combustion gases are fed to the evaporation zone of a reactor, where the metal melt is evaporated completely under nonoxidizing conditions, subsequently, the mixture flowing out of the evaporation zone is reacted in the oxidation zone of this reactor with a stream of a supplied oxygen-containing gas whose oxygen content is at least sufficient to oxidize the metal and the combustion gases completely.
摘要:
Nano-scale yttrium-zirconium mixed oxide powder in the form of aggregated primary particles having the following physico-chemical parameters:—BET surface area: from 40 to 100 m2/g,—da=from 3 to 30 nm, d,=mean, number-related primary particle diameter,—yttrium content, calculated as yttrium oxide Y2O3, determined by chemical analysis, from 5 to 15 wt. %, based on the mixed oxide powder,—yttrium contents of individual primary particles, calculated as yttrium oxide Y2O3 determined by TEM EDX, corresponding to the content in the powder+−10%,—content at room temperature, determined by X-ray diffraction and based on the mixed oxide powder—monoclinic zirconium oxide from
摘要:
Pyrogenically prepared zinc oxide powder having a BET surface area of from 10 to 200 m2/g, which is in the form of aggregates, the aggregates being composed of particles having different morphologies, and 0-10% of the aggregates being in a circular form, 30-50% being in an ellipsoidal form, 30-50% being in a linear form and 20-30% being in a branched form. It is prepared by reacting a starting mixture containing zinc vapour, a combustible gas and steam or a mixture of steam and carbon dioxide in a flame with an oxygen-containing gas in an oxidation zone, cooling the hot reaction mixture in a quenching zone and separating the solid material from the gas stream, the amount of oxygen in the oxidation zone being greater than the amount necessary for the complete oxidation of the combustible gas and the zinc vapour. The zinc oxide powder can be used as a constituent of sun protection compositions for protection against UV radiation.
摘要:
Process for preparing mixed metal oxide powders Abstract Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated in an evaporation zone of a reactor and oxidized in the vaporous state in an oxidation zone of this reactor, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein at least one pulverulent metal, together with one or more combustion gases, is fed to the evaporation zone, the metal is evaporated completely in the evaporation zone under nonoxidizing conditions, an oxygen-containing gas and at least one metal compound are fed, separately or together, in the oxidation zone to the mixture flowing out of the evaporation zone, the oxygen content of the oxygen-containing gas being at least sufficient to oxidize the metal, the metal compound and the combustion gas completely.
摘要:
Composite particles useful for absorbing in the UV-A and UV-B regions contain a zinc oxide matrix and cerium oxide domains, wherein the domains are located in and on the matrix, wherein a fraction of zinc oxide is 80 to 98% by weight and a fraction of cerium oxide is 2 to 20% by weight, in each case based on the composite particles, and wherein a BET surface area of said composite particles is from 5 to 100 m2/g.
摘要:
Indium-tin mixed oxide powder which consists of primary particle aggregates and contains 50 to 90% by weight indium oxide, calculated as In2O3, and 10 to 50% by weight tin oxide, calculated as SnO2. It is produced by atomising a solution of an inorganic indium compound and an organic tin compound and burning it in a flame. It may be used for the production of electrically conductive paints and coatings, solar cells and IR and UV absorbers and in medical technology.
摘要翻译:铟 - 锡混合氧化物粉末,其由一次粒子聚集体组成,并且包含以In 2 O 3计算的50至90重量%的氧化铟和以氧化锡计为10至50重量%的氧化锡。 它是通过将无机铟化合物和有机锡化合物的溶液雾化并在火焰中燃烧而制备的。 它可用于生产导电涂料和涂料,太阳能电池和IR和UV吸收剂以及医疗技术。
摘要:
Surface-modified superparamagnetic oxidic particles, characterized by the following physicochemical characteristics: BET surface area 20 to 75 m2/g; Carbon content 0.5 to 6.0% by weight; Tamped density 150 to 500 g/l; Chlorine content 50 to 1000 ppm; Drying loss 0.1 to 4.0% by weight are prepared by contacting the oxides with the surface modifier either by spraying or vapour deposition and then heat-treating them. The surface-modified oxidic particles can be used as a filler in adhesives. Further fields of application are use for data carriers, as a contrast agent in imaging processes, for biochemical separation and analysis processes, for medical applications, as an abrasive, as a catalyst or as a catalyst support, as a thickener, for thermal insulation, as a dispersing assistant, as a flow assistant and in ferrofluids.
摘要:
Mixed oxide powder containing indium and tin, with a proportion of indium oxide of between 90 and 98 wt. % and a BET surface area of 40 to 120 m2/g, which is in the form of aggregates having an average circumference of less than 500 nm, consists of at least 95% of an indium oxide phase and displays an oxygen content that is lower than the content that theoretically results from In2O3 and SnO2. It is produced by mixing a solution of an indium compound with a solution of a tin compound, atomising this mixture of solutions, pyrolysing the atomised mixture of solutions in a first zone of a reactor and in a second zone of the reactor, following pyrolysis, adding reducing gases to the pyrolysed mixture at one or more points in a quantity such that overall a reducing atmosphere is established in this second zone, and separating the resulting solid from the waste gases in a further, third zone, in which a reducing atmosphere likewise still prevails. It can be used for the production of transparent, electroconductive paints and coatings.