Abstract:
An infrared radiation source has a radiation-transparent, gas-tight tube made of electrically insulating material, in which a heat conductor made of carbon strip is arranged. The heat conductor has two ends, which are respectively electrically and mechanically connected to bushings made of molybdenum and/or tungsten and/or tantalum, and the bushings are respectively connected via current feed-through leads with electrical connections projecting from the tube. The two ends of the heat conductor are respectively connected to one of the bushings by a metallic solder, which contains at least one of the metals titanium, zirconium or hafnium.
Abstract:
An infrared emitter element includes: at last one emitter tube made of silica glass, which has two ends; at least one electrical conductor arranged in the emitter tube as a radiation source; a cooling tube made of silica glass, which surrounds the at least one emitter tube spaced therefrom and which is connected to the at least one emitter tube directly at its ends, such that in the region of the electrical conductor at least one flow-supporting channel is formed between the at least one emitter tube and the cooling tube; and a metallic reflector. The cooling tube is completely covered with the reflector on its side facing away from the emitter tube. The infrared emitter element may be used as a flow-through heater, such as a heat exchanger, especially for high-purity fluids.
Abstract:
A method for manufacturing an electrically conductive material includes steps of: (a) providing a carbon fiber; (b) providing a plastic fiber that differs from the carbon fiber; (c) producing a mixture in the form of a two-dimensional mat from the carbon fiber and the plastic fiber; (d) drying the mixture, optionally; (e) consolidating the mixture; (f) cutting the mixture to size, optionally; (g) carbonizing the mixture, wherein the carbonized plastic fibers form a carbon-based matrix possessing electrical conductivity that at least partially surrounds the carbon fibers. Electrically conductive materials obtained by the method have an increased electrical resistance. An emitter is specified that contains a transparent or translucent housing and an electrically conductive material as to above. These now allow emitters of virtually any length to be operated at customary line voltages.
Abstract:
A method is provided for producing an infrared emitter made of an endless quartz glass body, wherein a reflector layer is deposited at least partially on the surface of the body made of quartz glass. The quartz body is divided into individual sections after application of the reflector layer. An infrared emitter is also provided.
Abstract:
A module is provided for irradiation of at least one substrate. The module includes an irradiation unit for irradiating the substrate with ultraviolet light, wherein the irradiation unit has a discharge lamp with an integrated reflector. A method is also provided for producing an irradiation module for irradiating a substrate using UV light, wherein the reflector is coated on the discharge lamp.
Abstract:
A high-power radiation module has thermal protection made of inorganic, oxidic material arranged between the radiator and housing. The thermal protection is made of an essentially fiber-free material that is optically inhomogeneous with respect to IR radiation and/or UV radiation The high-power radiation module has a power per unit contact area of at least 200 kW/m2. The use of a radiation module and a method for the production of a radiation module include radiators or radiation units connected electrically and held mechanically in a housing having an outlet opening for the emitted radiation.
Abstract translation:大功率辐射模块具有散热器和外壳之间布置的无机氧化材料制成的热保护。 热保护由基本上无纤维的材料制成,其相对于IR辐射和/或UV辐射在光学上不均匀。高功率辐射模块具有至少200kW / m 2的每单位接触面积的功率。 使用辐射模块和制造辐射模块的方法包括辐射器或辐射单元,其电连接并机械地保持在具有用于所发射的辐射的出口的壳体中。
Abstract:
A method is provided for producing an infrared emitter made of an endless quartz glass body, wherein a reflector layer is deposited at least partially on the surface of the body made of quartz glass. The quartz body is divided into individual sections after application of the reflector layer. An infrared emitter is also provided.
Abstract:
An IR radiant heater has at least one planar carbon heating element (1) arranged in a housing, which is transparent or at least partially transparent to IR radiation. At least one carbon heating element (1) is a CFC web arranged in a plane and arranged between two plates (2, 3), of which at least one is transparent or partially transparent.
Abstract:
A method is provided for manufacture of an electrically conductive material, including the steps of: (a) providing a structure made of electrically conductive fibers, and (b) producing a carbon-based, electrically conductive matrix at least partially enveloping the electrically conductive fibers. Before or after producing the matrix, at least part of the electrically conductive fibers are interrupted in the direction of possible current flow. Electrically conductive materials obtained in corresponding manner are also provided. An emitter is specified that contains a transparent or translucent housing and an electrically conductive material according to the above. The electrically conductive materials have an increased electrical resistance. These allow emitters of virtually any length to be operated at customary line voltages.
Abstract:
An irradiation device is provided having a housing having an interior chamber and an infrared emitter arranged therein. The infrared emitter has an emitter tube made of high silica content glass having a round cross section and a defined outer diameter. Electrical connection elements are made of a metallic material and led out from the emitter tube through a seal. In order to provide the emitter with a long service life and potentially higher output, which is also suitable for being enclosed by a seal that separates the regions of different media, temperatures, or pressures, the emitter tube end also has a round cross section and the defined outer diameter. Between the electrical connection element and the emitter tube there is a seal containing at least one transition glass, which has a thermal expansion coefficient lying between that of the metallic material and that of the high silica content glass.