Abstract:
Systems and methods for implementing coexistence by requesting access to a channel in power line communications (PLC) are described. In an illustrative embodiment, a method performed by a PLC device, such as a PLC meter, may include detecting a communication from foreign PLC device on a PLC network in response to a foreign preamble received by the PLC device, determining whether a threshold back-off duration has been reached, and transmitting a channel access request in response to a determination that the threshold back-off duration has been reached.
Abstract:
A method of operating a transmitter (FIGS. 3A and 5A) is disclosed. The method includes receiving a sequence of data bits (DATA), wherein each data bit has a respective sequence number. A first data bit of the sequence is spread (508) with a first spreading code (504) determined by the sequence number (502) of the first data bit. A second data bit of the sequence is spread (508) with an inverse of the first spreading code (506) determined by the sequence number (502) of the second data bit. The first and second data bits are modulated (510) and transmitted (516) to a remote receiver.
Abstract:
A method and apparatus are provided. The VBUS conductor is checked to determine whether the voltage on the VBUS conductor is greater than a vSafe0V voltage within a dead battery detect time interval, and the device policy manager is instructed to apply a vSafeDB voltage to the VBUS conductor if the voltage on the VBUS conductor is greater than the vSafe0V voltage. The policy engine waits for a bit stream to be detected within a bit stream detect timer interval. If the bit stream is not detected within the bit stream detect timer interval, then the device policy manager is instructed to apply the vSafe0V voltage to the VBUS conductor. The device policy manager is instructed to apply a vSafe5V voltage to the VBUS conductor if the bit stream is detected, and the policy engine waits for the bit stream to stop within a device ready timer interval. If the bit stream has stopped within the device ready timer interval, then the policy engine sends capabilities as a source port.
Abstract:
A power line communication (PLC) device comprises a processor and a memory coupled to the processor. The memory is configured to store program instructions executable by the processor to cause the PLC device perform operations. One or more time slots are sequentially scan in each of a plurality of frequency bands. A packet transmitted by a second PLC device to the PLC device over one of the plurality of frequency bands is detected. Additional packets received from the second PLC device across the plurality of frequency bands based, at least in part, upon the detected packet are synchronized. The additional packets are organized in a plurality of frames, each of the plurality of frames having been transmitted by the second PLC device to the PLC device over a respective one of the plurality of frequency bands. Each frame has a plurality of time slots, and each time slot has a pair of beacon and bandscan packets, Each bandscan packet includes information indicating a frequency band distinct from any of the plurality of different frequency bands to be used by the second PLC device to communicate with the first PLC device in a direction from the second PLC device to the first PLC device.
Abstract:
A method of operating a transmitter (FIGS. 3A and 5A) is disclosed. The method includes receiving a sequence of data bits (DATA), wherein each data bit has a respective sequence number. A first data bit of the sequence is spread (508) with a first spreading code (504) determined by the sequence number (502) of the first data bit. A second data bit of the sequence is spread (508) with an inverse of the first spreading code (506) determined by the sequence number (502) of the second data bit. The first and second data bits are modulated (510) and transmitted (516) to a remote receiver.
Abstract:
Systems for channel selection in power line communications (PLC) are described. In some embodiments, a PLC device may include a processor and a memory. The memory stores instructions executable by the processor to cause the PLC device perform operations. One or more time slots in each of a plurality of frequency bands are sequentially scanned. A packet transmitted by a second PLC device to the PLC device over one of the plurality of frequency bands is detected. Additional packets received from the second PLC device are synchronized across the plurality of frequency bands based, at least in part, upon the detected packet. The additional packets are organized in a plurality of frames. Each of the plurality of frames having been transmitted by the second PLC device to the PLC device over a respective one of the plurality of frequency bands. Each frame has a plurality of time slots, and each time slot has a pair of beacon and bandscan packets.
Abstract:
A method includes: transmitting, via a signal generator, an electrical driving signal, the electrical driving signal having a mean square error; transmitting, via a wave generating component, a Lamb wave, the Lamb wave having many different modes; estimating, via an estimating component, a propagation parameter associated with the Lamb wave; and estimating, via an estimating component, a thickness of a material.
Abstract:
Embodiments of the invention provide multiple cyclic prefix lengths for either both the data-payload and frame control header or only the data payload. Frame control header (FCH) and data symbols have an associated cyclic prefix. A table is transmitted in the FCH symbols, which includes a cyclic prefix field to identify the cyclic prefix length used in the data payload. A receiver may know the cyclic prefix length used in the FCH symbols in one embodiment. In other embodiments, the receiver does not know the FCH cyclic prefix length and, therefore, attempts to decode the FCH symbols using different possible cyclic prefix lengths until the FCH symbols are successfully decoded.
Abstract:
A transducer system. The system comprises a transducer and circuitry for applying an excitation waveform to excite the transducer during an excitation period. The circuitry for applying has: (i) circuitry for applying a first waveform at a first frequency; and (ii) circuitry for applying a second waveform at a second frequency differing from the first frequency.
Abstract:
Methods for building, transmitting, and receiving frame structures in power line communications (PLC) are described. Various techniques described herein provide a preamble design using one or more symbols. One or more preamble symbols may be interspersed within a header portion of a PLC frame to facilitate estimation of a frame boundary and/or sampling frequency offset, for example, in the presence of impulsive noise.