Abstract:
A technique for excess loop delay compensation in delta sigma modulator. The delta sigma modulator includes a loop filter. The loop filter receives an analog input signal and an output of a digital to analog converter. A comparator receives an output of the loop filter and generates a digital output signal. A reference select logic unit receives the digital output signal as a feedback and generates one or more switching signals. One or more switches are coupled to the comparator and each switch receives a pre-computed reference voltage. The one or more switches are activated by the one or more switching signals in response to the digital output signal.
Abstract:
A voltage-to-delay converter converts input signals into delay signals, and includes: a first stage for receiving the input signals and for generating intermediate output signals, wherein timing of the intermediate output signals corresponds to voltages of the input signals, and wherein the first stage has a voltage source for providing a rail-to-rail voltage; and a second stage for receiving the intermediate output signals and for generating rail-to-rail output signals, wherein timing of the rail-to-rail output signals corresponds to the timing of the intermediate output signals, and wherein voltage of the rail-to-rail output signals corresponds to the rail-to-rail voltage. A voltage-to-delay converter block is also described. A circuit for receiving differential input signals, generating corresponding output signals, and removing common mode signals from the output signals is also described.
Abstract:
A system for converting a voltage into output codes includes logic gates for processing delay signals based on earlier and later arriving signals generated by preamplifiers, delay comparators for generating digital signals representative of most significant bits of respective codes, and for transmitting delay residue signals representative of less significant bits of the codes, and an auxiliary delay comparator for generating an auxiliary digital signal for use in generating the output codes. A system may include logic gates for generating delay signals based on earlier and later arriving signals, delay comparators for generating digital signals representative of most significant bits of respective codes, and for transmitting delay residue signals representative of less significant bits, and a multiplexer system for transmitting a selected one of the residue signals.
Abstract:
A circuit includes a filter, a first inverter, and a second inverter. The filter is coupled to an input of the first inverter. The second inverter includes an input and an output. The input of the second inverter is coupled to the output of the first inverter. The output of the second inverter is coupled to the input of the first inverter. The filter includes a notch filter and a bandpass filter.
Abstract:
A system includes a Zero IF transmitter having a mixer and a programmable gain stage. The Zero IF transmitter also includes an intermediate stage between the mixer and the programmable gain stage, wherein the intermediate stage is configured to decouple the mixer and the programmable gain stage.
Abstract:
A circuit includes a filter, a first inverter, and a second inverter. The filter is coupled to an input of the first inverter. The second inverter includes an input and an output. The input of the second inverter is coupled to the output of the first inverter. The output of the second inverter is coupled to the input of the first inverter.
Abstract:
A modulator of an analog to digital converter includes a quantizer component configured to generate a digital signal based on a clock input operating at a sample rate. The modulator further includes a first digital to analog converter (DAC) configured to generate first DAC output at half the sample rate. The modulator further includes a second DAC configured to generate second DAC output at half the sample rate, where the first DAC and the second DAC are updated at alternate cycles of the clock input.
Abstract:
The disclosure provides a delta sigma modulator that includes a first input port and a second input port. These ports receive a differential input signal. A DAC is coupled to the first input port and the second input port, and receives a differential feedback signal and a plurality of selection signals. A loop filter generates a differential filtered signal in response to a differential error signal. The differential error signal is proportional to a difference in the differential input signal and the differential feedback signal. A quantizer generates a quantized output signal in response to the differential filtered signal. A modified DWA block coupled between the quantizer and the DAC, generates the plurality of selection signals in response to a chop clock, a regular clock, the quantized output signal and a plurality of selection index signals. A selection index signal is dependent on previously generated plurality of selection signals.