Abstract:
A method for fabricating packaged semiconductor devices in panel format. A flat panel sheet dimensioned for a set of contiguous chips includes a stiff substrate of an insulating plate, and a tape having a surface layer of a first adhesive releasable at elevated temperatures, a core base film, and a bottom layer with a second adhesive attached to the substrate. Attaching a set onto the first adhesive layer, the chip terminals having terminals with metal bumps facing away from the first adhesive layer. Laminating low CTE insulating material to fill gaps between the bumps and to form an insulating frame surrounding the set. Grinding lamination material to expose the bumps. Plasma-cleaning assembly, sputtering uniform metal layer across assembly, optionally plating metal layer, and patterning metal layer to form rerouting traces and extended contact pads.
Abstract:
A method for fabricating packaged semiconductor devices in panel format; placing a panel-sized metallic grid with openings on an adhesive tape (292); attaching semiconductor chips—coated with a polymer layer having windows for chip terminals —face-down onto the tape (293); laminating low CTE insulating material to fill gaps between chips and grid (294); turning over assembly to place carrier under backside of chips and lamination and to remove tape (295); plasma-cleaning assembly front side, sputtering uniform metal layer across assembly (296); optionally plating metal layer (297); and patterning sputtered layer to form rerouting traces and extended contact pads for assembly (298).
Abstract:
In one example, embedded die package, including a layer having an exposed boundary, wherein at least a portion of the exposed boundary comprises organic material. The package also includes at least one integrated circuit die positioned in the layer and within the exposed boundary. The package also includes a dielectric material positioned in the layer and between the at least one integrated circuit and structure adjacent the at least one integrated circuit.
Abstract:
Packaged electronic devices and integrated circuits include a ceramic material or other thermally conductive, electrically insulating substrate with a patterned electrically conductive feature on a first side, and an electrically conductive layer on a second side. The IC further includes a semiconductor die mounted to the substrate, the semiconductor die including an electrically conductive contact structure, and an electronic component, with an electrically insulating lamination structure enclosing the semiconductor die, the frame and the thermal transfer structure. A redistribution layer with a conductive structure is electrically connected to the electrically conductive contact structure.
Abstract:
A semiconductor device includes a semiconductor die having a top side surface comprising a semiconductor material including circuitry therein having bond pads connected to nodes in the circuitry, a bottom side surface, and sidewall surfaces between the top side surface and the bottom side surface. A metal coating layer including a bottom side metal layer is over the bottom side surface that extends continuously to a sidewall metal layer on the sidewall surfaces. The sidewall metal layer defines a sidewall plane that is at an angle from 10° to 60° relative to a normal projected from a bottom plane defined by the bottom side metal layer.
Abstract:
Packaged electronic devices and integrated circuits include a ceramic material or other thermally conductive, electrically insulating substrate with a patterned electrically conductive feature on a first side, and an electrically conductive layer on a second side. The IC further includes a semiconductor die mounted to the substrate, the semiconductor die including an electrically conductive contact structure, and an electronic component, with an electrically insulating lamination structure enclosing the semiconductor die, the frame and the thermal transfer structure. A redistribution layer with a conductive structure is electrically connected to the electrically conductive contact structure.
Abstract:
Packaged electronic devices and integrated circuits include a ceramic material or other thermally conductive, electrically insulating substrate with a patterned electrically conductive feature on a first side, and an electrically conductive layer on a second side. The IC further includes a semiconductor die mounted to the substrate, the semiconductor die including an electrically conductive contact structure, and an electronic component, with an electrically insulating lamination structure enclosing the semiconductor die, the frame and the thermal transfer structure. A redistribution layer with a conductive structure is electrically connected to the electrically conductive contact structure.
Abstract:
The disclosed principles provide a stress buffer layer between an IC die and heat spreader used to dissipate heat from the die. The stress buffer layer comprises distributed pairs of conductive pads and a corresponding set of conductive posts formed on the conductive pads. In one embodiment, the stress buffer layer may comprise conductive pads laterally distributed over non-electrically conducting surfaces of an embedded IC die to thermally conduct heat from the IC die. In addition, such a stress buffer layer may comprise conductive posts laterally distributed and formed directly on each of the conductive pads. Each of the conductive posts thermally conduct heat from respective conductive pads. In addition, each conductive post may have a lateral width less than a lateral width of its corresponding conductive pad. A heat spreader is then formed over the conductive posts which thermally conducts heat from the conductive posts through the heat spreader.