Abstract:
A method for fabricating packaged semiconductor devices; attaching a batch-sized metallic grid with openings onto an adhesive tape having an insulating clear core covered by a layer of UV-releasable adhesive, the openings sized larger than a semiconductor chip; attaching a semiconductor chip onto the tape of each window, the chip terminals facing the adhesive surface; laminating insulating material of low coefficient of thermal expansion to fill gaps between each chip and respective grid; turning over assembly to place a carrier under backside of chips and lamination and to remove the tape; plasma-cleaning the assembly front side and sputtering uniform at least one metal layer across the assembly; optionally plating metal layers; and patterning the metal layers to form rerouting traces and extended contact pads for assembly.
Abstract:
A semiconductor device has a semiconductor chip having a first surface with metallized terminals and a parallel second surface. A frame of insulating material adheres to at the sidewalls of the chip. The frame has a first surface planar with the first chip surface and a parallel second surface planar with the second chip surface. The first frame surface includes one or more embedded metallic fiducials extending from the first surface to the insulating material. At least one film of sputtered metal extends from the terminals across the surface of the polymeric layer to the fiducials. The film is patterned to form extended contact pads over the frame and rerouting traces between the chip terminals and the extended contact pads. The film adheres to the surfaces.
Abstract:
A semiconductor device has semiconductor chip assembled on a substrate. The substrate has a first surface including conductive traces, which have a first length and a first width, the first width being uniform along the first length, and further a pitch to respective adjacent traces. The semiconductor chip has a second surface including contact pads; the second surface faces the first surface spaced apart by a gap. A conductive pillar contacts each contact pad; the pillar includes a core and a solder body, which connects the core to the respective trace across the gap. The pillar core has a non-circular cross section of a second width and a second length greater than the second width and greater than the first width.
Abstract:
A method for fabricating packaged semiconductor devices in panel format; placing a panel-sized metallic grid with openings on an adhesive tape (292); attaching semiconductor chips—coated with a polymer layer having windows for chip terminals —face-down onto the tape (293); laminating low CTE insulating material to fill gaps between chips and grid (294); turning over assembly to place carrier under backside of chips and lamination and to remove tape (295); plasma-cleaning assembly front side, sputtering uniform metal layer across assembly (296); optionally plating metal layer (297); and patterning sputtered layer to form rerouting traces and extended contact pads for assembly (298).
Abstract:
An improved semiconductor device package is manufactured by attaching semiconductor chips (130) on an insulating substrate (101) having contact pads (103). A mold is provided, which has a top portion (210) with metal protrusions (202) at locations matching the pad locations. The protrusions are shaped as truncated cones. The substrate and the chips are loaded onto the bottom mold portion (310); the mold is closed by clamping the top portion onto the bottom portion so that the protrusions approach the contact pads. Encapsulation compound is introduced into the cavity and the protrusions create apertures through the encapsulation compound towards the pad locations.
Abstract:
A semiconductor device has a semiconductor chip having a first surface with metallized terminals and a parallel second surface. A frame of insulating material adheres to at the sidewalls of the chip. The frame has a first surface planar with the first chip surface and a parallel second surface planar with the second chip surface. The first frame surface includes one or more embedded metallic fiducials extending from the first surface to the insulating material. At least one film of sputtered metal extends from the terminals across the surface of the polymeric layer to the fiducials. The film is patterned to form extended contact pads over the frame and rerouting traces between the chip terminals and the extended contact pads. The film adheres to the surfaces.
Abstract:
An improved method for fabricating a semiconductor device provides a mold having a top portion and a bottom portion. The top portion includes recesses suitable for a cavity and a plurality of protrusions shaped as truncated cones. A thin sheet of compliant inert polymer is placed over the surface of the top portion. A molding compound is introduced into the cavity to form a encapsulation body covering a semiconductor chip and linear arrays of contact pads adjacent to the chip. Each conical protrusion matches a contact pad location. The thin sheet of compliant inert polymer is peeled off the top portion. The mold is opened and the encapsulated semiconductor chip is removed.
Abstract:
a An improved semiconductor device package is manufactured by attaching semiconductor chips (130) on an insulating substrate (101) having contact pads (103). A mold is provided, which has a top portion (210) with metal protrusions (202) at locations matching the pad locations. The protrusions are shaped as truncated cones. The substrate and the chips are loaded onto the bottom mold portion (310); the mold is closed by clamping the top portion onto the bottom portion so that the protrusions approach the contact pads. Encapsulation compound is introduced into the cavity and the protrusions create apertures through the encapsulation compound towards the pad locations.
Abstract:
A method for fabricating packaged semiconductor devices; attaching a batch-sized metallic grid with openings onto an adhesive tape having an insulating clear core covered by a layer of UV-releasable adhesive, the openings sized larger than a semiconductor chip; attaching a semiconductor chip onto the tape of each window, the chip terminals facing the adhesive surface; laminating insulating material of low coefficient of thermal expansion to fill gaps between each chip and respective grid; turning over assembly to place a carrier under backside of chips and lamination and to remove the tape; plasma-cleaning the assembly front side and sputtering uniform at least one metal layer across the assembly; optionally plating metal layers; and patterning the metal layers to form rerouting traces and extended contact pads for assembly.