Abstract:
A circuit includes a bandpass filter and a self-tracking circuit. The bandpass filter has a first input node configured to receive an input square wave signal and an output node configured to provide an output sine wave signal. The bandpass filter includes a first binary-weighted programmable resistor array. The self-tracking circuit includes a second input node coupled to the output node. The self-tracking circuit includes a counter, and the counter includes an output node coupled to the first binary weighted programmable resistor array.
Abstract:
Methods and apparatus providing a smooth transition from a pulse width modulation mode to a linear mode to drive a voice coil motor are disclosed. An example apparatus includes an H-bridge; a pulse generator to generate a pulse when the voice coil motor driver transitions from pulse width modulation mode to linear mode; a first boost circuit to, when the pulse is generated, increase a first current being applied to a first gate of a first transistor in the H-bridge, the increase in the first current enabling the first transistor; and a second boost circuit to, when the pulse is generated, provide an additional path to ground from a node coupled to a second gate of a second transistor of the H bridge, the path to ground corresponding to a voltage drop that disables the second transistor.
Abstract:
An integrated circuit includes a motor current input voltage-to-current (VI) converter that receives a motor current sensor voltage from a motor and a reference voltage to generate an output current related to a motor's current. A motor current calibration VI converter compensates for errors in the motor current input VI converter and generates a calibration output current based on the reference voltage, wherein the output current and the calibration output current are combined to form an estimate of the motor's current.
Abstract:
A circuit includes a gain stage, first and second amplifiers, and a comparison circuit. The gain stage has an input and an output. The first amplifier has an input and an output. The input of the first amplifier is coupled to the input of the gain stage. The second amplifier has an input and an output. The input of the second amplifier is coupled to the output of the gain stage. The comparison circuit is coupled to the outputs of the first and second amplifiers. The comparison circuit is configured to compare signals on the outputs of the first and second amplifiers and to generate a fault flag signal responsive to the output signal from the first amplifier being different than the output signal from the second amplifier.
Abstract:
An angular resolver system includes, for example, an imbalance detector for detecting degraded resolver output signals. The imbalance detector includes a first and second power averaging circuits and a comparator circuit. The first power averaging circuit includes a first integrator for generating over a first time window a first average power signal in response to resolver sensor output signals. The second power averaging circuit includes a second integrator for generating over a second time window a second average power signal in response to the resolver sensor output signals, where the first time window is longer than the second time window. The comparator circuit compares the first average power signal and the second average power signal and generates a fault signal when the first average power signal and the second average power signal differ by a selected voltage threshold.
Abstract:
An integrated circuit includes a motor current input voltage-to-current (VI) converter that receives a motor current sensor voltage from a motor and a reference voltage to generate an output current related to a motor's current. A motor current calibration VI converter compensates for errors in the motor current input VI converter and generates a calibration output current based on the reference voltage, wherein the output current and the calibration output current are combined to form an estimate of the motor's current.
Abstract:
An integrated circuit includes a motor current input voltage-to-current (VI) converter that receives a motor current sensor voltage from a motor and a reference voltage to generate an output current related to a motor's current. A motor current calibration VI converter compensates for errors in the motor current input VI converter and generates a calibration output current based on the reference voltage, wherein the output current and the calibration output current are combined to form an estimate of the motor's current.
Abstract:
A series-structure, parallel-structure and combined structure of micro-step resistance network circuits is disclosed. Micro-step resistance is maintained, while the programming switches on-state resistance impact and its VC and TC effect are minimized. The programming switch area size is greatly reduced as compared to conventional systems.
Abstract:
One or more high-order bit linear branches of a segmented DAC are implemented as R-2R networks geometrically down-scaled from the DAC binary portion by a selected factor. The resulting increase in closely-located mismatch is compensated for by implementing a trim circuit at a low-order end of each such linear branch. The trim circuit is designed with a number of trim steps to compensate for the selected linear branch down-scaling factor. Each trim step switches a resistance into the low-order end of the linear branch resulting in an even resistance increment or decrement at the lumped linear branch output. The trim circuit is calibrated to provide an amount of trim at the linear branch output such that the lumped resistance of the trimmed linear branch matches the lumped resistance of the binary portion within a selected tolerance (e.g., generally +/−0.5 LSB).
Abstract:
A high performance digitalized Programmable Gain Amplifier (PGA). In prior art circuit, a dual-ladder DAC is employed for gain control, the back gate leakage of NMOS resistors in the fine ladder conquers fine ladder nominal current and it produces non-monotonic gain scallop. Two new art design techniques: (1) adaptively control the fine ladder; and (2) use dummy PMOS brunch device leakage compensates for the NMOS resistor device leakage, are proposed so that the non-monotonic scallops are substantially eliminated and 13-bit resolution/accuracy PGA has been achieved.