Abstract:
A flexible wireless communication device with high position accuracy and low cost by a simple process is described, including a wireless communication device and a method for manufacturing a wireless communication device formed by bonding a first film substrate on which at least a circuit is formed and a second film substrate on which an antenna is formed, in which the circuit includes a transistor, and the transistor is formed by a step of forming a conductive pattern on the first film substrate, a step of forming an insulating layer on the film substrate on which the conductive pattern is formed, and a step of applying a solution including an organic semiconductor and/or a carbon material on the insulating layer and drying the solution to form a semiconductor layer.
Abstract:
An object of the present invention is to provide a n-type semiconductor element having improved n-type semiconductor characteristics and excellent stability with a convenient process, where the n-type semiconductor element includes: a substrate; a source electrode, a drain electrode, and a gate electrode; a semiconductor layer in contact with the source electrode and the drain electrode; a gate insulating layer for insulating the semiconductor layer from the gate electrode; and a second insulating layer positioned on the opposite side of the semiconductor layer from the gate insulating layer and in contact with the semiconductor layer, where the semiconductor layer contains nanocarbon, and the second insulating layer contains (a) a compound with an ionization potential in vacuum of 7.0 eV or less, and (b) a polymer.
Abstract:
A memory array includes: a plurality of first wires; at least one second wire crossing the first wires; and a plurality of memory elements provided in correspondence with respective intersections of the first wires and the at least one second wire and each having a first electrode and a second electrode arranged spaced apart from each other, a third electrode connected to one of the at least one second wire, and an insulating layer that electrically insulates the first electrode and the second electrode and the third electrode from each other, the first wires, the at least one second wire, and the first wires, the at least one second wire, and the memory elements being formed on a substrate.
Abstract:
A p-type impurity diffusion composition is provided which makes it possible to improve storage stability of a coating liquid, and to achieve uniform diffusion of the coating liquid on a semiconductor substrate. The p-type impurity diffusion composition includes (A) a group-13 element compound, (B) a hydroxyl-group-containing polymer, and (C) an organic solvent, (Cl) a cyclic ester solvent being contained in the organic solvent.
Abstract:
A carbon nanotube composite has an organic substance attached to at least a part of a surface thereof. At least one functional group selected from a hydroxyl group, a carboxy group, an amino group, a mercapto group, a sulfo group, a phosphonic acid group, an organic or inorganic salt thereof, a formyl group, a maleimide group and a succinimide group is contained in at least a part of the carbon nanotube composite.
Abstract:
An impurity-diffusing composition including (A) a polysiloxane represented by Formula (1) and (B) an impurity diffusion component. In the formula, R1 represents an aryl group having 6 to 15 carbon atoms, and a plurality of R1 may be the same or different. R2 represents any of a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R2 may be the same or different. R3 and R4 each represent any of a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an acyl group having 2 to 6 carbon atoms, and a plurality of R3 and a plurality of R4 each may be the same or different. The ratio of n:m is 95:5 to 25:75.
Abstract:
There is provided a field effect transistor which comprises a gate insulating layer, a gate electrode, a semiconductor layer, a source electrode and a drain electrode. The gate insulating layer contains an organic compound that contains a silicon-carbon bond and a metal compound that contains a bond between a metal atom and an oxygen atom; and the metal atoms are contained in the gate insulating layer in an amount of 10 to 180 parts by weight with respect to 100 parts by weight of the total of carbon atoms and silicon atoms. This field effect transistor (FET) has high mobility and a low voltage of the threshold value, while being suppressed in leak current.
Abstract:
An object of the present invention is to provide a n-type semiconductor element having improved n-type semiconductor characteristics and excellent stability, where the n-type semiconductor element includes a second insulating layer, where the second insulating layer contains: A. (a) a compound having one carbon-carbon double bond or one conjugated system bound to at least one group represented by general formula (1) and at least one group represented by general formula (2); and (b) a polymer; or B. a polymer having, in its molecular structure, the remaining group after removing some hydrogen atoms from R1, R2, R3, or R4 in the compound (a), or the remaining group after removing some hydrogen atoms from the carbon-carbon double bond or the conjugated system in the compound (a).
Abstract:
Provided is a lithographic ink having superior surface staining resistance and fluidity. Also provided is a method for manufacturing a printed material using the lithographic ink. The lithographic ink has all of a viscosity (A) at a rotational speed of 0.5 rpm, a viscosity (B) at a rotational speed of 20 rpm, and a viscosity (C) at a rotational speed of 50 rpm of 5 Pa·s or more and 100 Pa·s or less, the viscosities (A), (B), and (C) being measured by using a cone-plate rotating viscometer at 25° C., and has a viscosity ratio (C)/(B) of 0.8 or more and 1.0 or less.
Abstract:
Provided is a method for manufacturing a field-effect transistor, the method including the steps of: forming a gate electrode on the surface of a substrate; forming a gate insulating layer on the gate electrode; forming a conductive film containing a conductor and a photosensitive organic component by a coating method on the gate insulating layer; exposing the conductive film from the rear surface side of the substrate with the gate electrode as a mask; developing the exposed conductive film to form a source electrode and a drain electrode; and forming a semiconductor layer by a coating method between the source electrode and the drain electrode. This method makes it possible to provide an FET, a semiconductor device, and an RFID which can be prepared by a simple process, and which have a high mobility, and have a gate electrode and source/drain electrodes aligned with a high degree of accuracy.