摘要:
A dielectric device of higher performance is provided. An electron emitter, to which the dielectric device is applied is provided with: an emitter including a dielectric; and an upper electrode and a lower electrode to which drive voltage is applied in order to emit electrons. The emitter is formed by the aerosol deposition method or the sol impregnation method.
摘要:
A (Li, Na, K)(Nb, Ta)O3 based piezoelectric/electrostrictive porcelain composition obtained by adding a slight amount of a Mn compound to a perovskite type oxide containing Li, Na and K as A-site elements and contains at least Nb out of Nb and Ta as B-site elements, where a ratio of a total number of atoms of the A-site elements to a total number of atoms of the B-site elements is not smaller than 1. A composition of the perovskite type oxide as a principal component is represented by a general formula: {Liy(Na1-xKx)1-y}a(Nb1-zTaz)O3. The A/B ratio “a” preferably satisfies 1
摘要翻译:通过向含有Li,Na和K的钙钛矿型氧化物中添加少量的Mn化合物作为A位元素而至少含有(Li,Na,K)(Nb,Ta)O 3的压电/电致伸缩瓷组合物 Nb中的Nb和Ta作为B位元素,其中A位元素的总原子数与B位元素的总原子数的比率不小于1.钙钛矿的组成 氧化物作为主要成分的通式为:{Liy(Na1-xKx)1-y} a(Nb1-zTaz)O3。 A / B比“a”优选满足1
摘要:
Piezoelectric materials having improved electrical properties, and manufacturing methods of the same, are provided. In (Li, Na, K, Bi)(Nb, Ta)O3 based piezoelectric materials, the surface microstructures of sintered bodies include microscopic grains having grain diameters of less than 5 μm, intermediate grains having grain diameters of 5 μm or more and less than 15 μm, and coarse grains having grain diameters of 15 μm or more and 100 μm or less.
摘要:
There is disclosed a piezoelectric/electrostrictive ceramics which is a sintered body having a structure where a matrix and a filler are brought into a composite, the matrix is made of an alkali niobate-based piezoelectric/electrostrictive material, which includes a large number of grains combined with one another, including a perovskite type oxide, which includes at least one element selected from the group consisting of Li, Na and K as an A site constituent element and Nb as a B site constituent element, as a main crystal phase, the filler is made of a material (with the proviso that an alkali niobate-based material is excluded) having a thermal expansion coefficient smaller than that of the alkali niobate-based piezoelectric/electrostrictive material, and the volume fraction of the filler with respect to the total volume of the matrix and the filler is 0.5 vol % or more and below 10 vol %.
摘要:
A monomorph type piezoelectric/electrostrictive device includes a piezoelectric/electrostrictive body, which is composed of a non-lead based piezoelectric/electrostrictive crystalline body containing at least Nb, Ta, and one or more types of alkali metal element, which has a cubic crystal structure at a temperature higher than the phase transition point and at least any one of tetragonal and orthorhombic crystal structures at a temperature lower than the phase transition point, and which is curved to a large extent by a polarization treatment to take on a curved shape at a temperature lower than the phase transition point without application of a voltage after the polarization treatment. In the polarization treatment, an electric field is increased at a speed of from 0.1 (kV/mm)/sec or more to 5 (kV/mm)/sec or less, with applying the maximum electric field of from 2 kV/mm or more to 1.0 kV/mm or less.
摘要:
A monomorph type piezoelectric/electrostrictive device includes a piezoelectric/electrostrictive body, which is composed of a non-lead based piezoelectric/electrostrictive crystalline body containing at least Nb, Ta, and one or more types of alkali metal element, which has a cubic crystal structure at a temperature higher than the phase transition point and at least any one of tetragonal and orthorhombic crystal structures at a temperature lower than the phase transition point, and which is curved to a large extent by a polarization treatment to take on a curved shape at a temperature lower than the phase transition point without application of a voltage after the polarization treatment. In the polarization treatment, an electric field is increased at a speed of from 0.1 (kV/mm)/sec or more to 5 (kV/mm)/sec or less, with applying the maximum electric field of from 2 kV/mm or more to 1.0 kV/mm or less.
摘要:
An alkali niobate-based piezoelectric/electrostrictive ceramics sintered body including, as a main crystal phase, a perovskite type oxide containing at least one type of element selected from the group consisting of Li, Na and K as A site constituent elements and at least one type of element selected from the group consisting of Nb and Ta as B site constituent elements. The number of lattice-strained layers of the piezoelectric/electrostrictive ceramics sintered body is preferably small. A diffuse scattering intensity ratio, which is a ratio of an intensity of diffuse scattering by a lattice-strained layer present near a domain wall to a sum of an X-ray diffraction intensity of a first lattice plane and that of a second lattice plane different in interplanar spacing from the first lattice plane due to crystallographic symmetry reduction is preferably 0.5 or lower.
摘要:
A dielectric device of higher performance is provided. An electron emitter, to which the dielectric device is applied is provided with: an emitter including a dielectric; and an upper electrode and a lower electrode to which drive voltage is applied in order to emit electrons. The emitter is formed by the aerosol deposition method or the sol impregnation method, and the surface roughness of the upper surface thereof is controlled in the range from 0.1 to 3 in Ra.
摘要:
A dielectric device of higher performance is provided. An electron emitter, to which the dielectric device is applied is provided with: an emitter including a dielectric; and an upper electrode and a lower electrode to which drive voltage is applied in order to emit electrons. The emitter is formed by the aerosol deposition method or the sol impregnation method.
摘要:
A dielectric device of higher performance is provided. An electron emitter, to which the dielectric device is applied is provided with: an emitter including a dielectric; and an upper electrode and a lower electrode to which drive voltage is applied in order to emit electrons. The emitter is formed by the aerosol deposition method or the sol impregnation method, and the surface roughness of the upper surface thereof is controlled in the range from 0.1 to 3 in Ra.