摘要:
A bi-directional DC-DC converter has a transformer for connecting a voltage type full bridge circuit connected to a first power source and a current type switching circuit connected to a second power source. A voltage clamping circuit constructed by switching elements and a clamping capacitor is connected to the current type switching circuit. The converter has a control circuit for cooperatively making switching elements operative so as to control a current flowing in a resonance reactor.
摘要:
A bidirectional DC-DC converter 10 has smoothing capacitors Cs1 and Cs2, a smoothing reactor Ls, resonant reactors Lr1 and Lr2, and a resonant capacitor Cr, as well as insulated gate bipolar transistors (IGBTs) Q1, Q2, and Q3 to which buffer capacitors C1, C2, and C3 are connected in parallel and diodes D1, D2, and D3 are connected in a back-to-back configuration. After part of the energy stored in the smoothing reactor Ls and/or resonant reactors Lr1 and Lr2 draws charges in the buffer capacitor C3 and is stored in the resonant capacitor Cr, the energy is stored in the resonant reactors Lr1 and Lr2. The energy is used to draw charges in the buffer capacitors C1 and C2, achieving soft switching of IGBTs Q1, Q2, and Q3.
摘要:
A small and efficient DC-DC converter is provided. In this DC-DC converter, passive elements such as an inductor and a capacitor can be reduced in size by reducing switching loss by a soft switching technology and increasing the drive frequency of a switching element. The DC-DC converter has a main switching element, a main diode and an auxiliary circuit that discharges the electric charges of the capacitance between the ends of the main switching element. The DC-DC converter includes an auxiliary inductor magnetically coupled with the main inductor, an auxiliary switching element that stores energy in the auxiliary inductor, and an auxiliary diode that discharges energy stored in the auxiliary inductor to the direct-current power source or the output side. The auxiliary inductor is coupled with the main inductor in the direction in which backward voltage is applied to the auxiliary diode when the main inductor discharges energy.
摘要:
To provide a power supply apparatus having high control resolution of an output power. A PWM signal generating circuit includes: a non-inverting element 31, and an inverting element 32; and further includes a counter 11 for performing count operation in response to rising of a clock signal, a counter 12 for performing count operation in response to falling of the clock signal, comparison circuits 21, 22, and a multiplexer 20. These circuit elements are controlled by PWM control means 10. As another circuit element, the PWM signal generating circuit includes a logical sum element 33. The PWM signal generating circuit serves to arbitrarily change both period and logic “H” time of a PWM signal to be outputted at a time interval which is one half of the clock period. Thus, there is provided a power supply apparatus in which resolution of a PWM signal has been improved within a broad duty range, and fine control of an output power has been performed within a broad output power range.
摘要:
To provide a power supply apparatus having high control resolution of an output power. A PWM signal generating circuit includes: a non-inverting element 31, and an inverting element 32; and further includes a counter 11 for performing count operation in response to rising of a clock signal, a counter 12 for performing count operation in response to falling of the clock signal, comparison circuits 21, 22, and a multiplexer 20. These circuit elements are controlled by PWM control means 10. As another circuit element, the PWM signal generating circuit includes a logical sum element 33. The PWM signal generating circuit serves to arbitrarily change both period and logic “H” time of a PWM signal to be outputted at a time interval which is one half of the clock period. Thus, there is provided a power supply apparatus in which resolution of a PWM signal has been improved within a broad duty range, and fine control of an output power has been performed within a broad output power range.
摘要:
A small and efficient DC-DC converter is provided. In this DC-DC converter, passive elements such as an inductor and a capacitor can be reduced in size by reducing switching loss by a soft switching technology and increasing the drive frequency of a switching element. The DC-DC converter has a main switching element, a main diode and an auxiliary circuit that discharges the electric charges of the capacitance between the ends of the main switching element. The DC-DC converter includes an auxiliary inductor magnetically coupled with the main inductor, an auxiliary switching element that stores energy in the auxiliary inductor, and an auxiliary diode that discharges energy stored in the auxiliary inductor to the direct-current power source or the output side. The auxiliary inductor is coupled with the main inductor in the direction in which backward voltage is applied to the auxiliary diode when the main inductor discharges energy.
摘要:
Provided is a vehicle which enables a highly-efficient DC-DC converter and a highly-efficient power supply to a load, regardless of a power supply amount of to the load. When the power supply amount to a load R1 is a predetermined value or more, a control means 5 implements a first mode for making the switching elements S1 to S4 driven, and when the power supply amount of to the load R1 is the predetermined value or less, the control means 5 implements a second mode, for making the switching elements S3 and S4 stopped in an OFF state, and making only the switching elements S1 and S2 driven.
摘要:
Disclosed is a charging system for both plug-in charging systems and contactless charging systems, having a simple electrical configuration, and capable of achieving miniaturization and weight saving. The charging system includes a secondary cell charged via first/second coils of a transformer to which electrical power is supplied from a first power supply via a plug-in connector, and a third coil supplied with electrical power from a second power supply, a relative position of which to the second coil of the transformer is variable, and which can be magnetically coupled to the second coil when the second coil approaches the third coil, wherein the secondary cell is charged via magnetic coupling between first/second coils when charging the secondary cell by the first power supply, and the secondary cell is charged via magnetic coupling between the third coil and second coils when charging the secondary cell by the second power supply.
摘要:
Disclosed is a charging system for both plug-in charging systems and contactless charging systems, having a simple electrical configuration, and capable of achieving miniaturization and weight saving. The charging system includes a secondary cell charged via first/second coils of a transformer to which electrical power is supplied from a first power supply via a plug-in connector, and a third coil supplied with electrical power from a second power supply, a relative position of which to the second coil of the transformer is variable, and which can be magnetically coupled to the second coil when the second coil approaches the third coil, wherein the secondary cell is charged via magnetic coupling between first/second coils when charging the secondary cell by the first power supply, and the secondary cell is charged via magnetic coupling between the third coil and second coils when charging the secondary cell by the second power supply.
摘要:
To provide an AC-DC converter that is highly efficient in a broad load current range from a light load to a heavy load.An AC-DC converter 1 has a main circuit and a control means 4; the main circuit includes a diode bridge circuit 3, a main inductor L1, a main switching element S1, a main diode D1, an auxiliary inductor L2, an auxiliary switching element S2, an auxiliary diode D2, and a smoothing capacitor C1 connected to a DC load 12. The AC-DC converter 1 supplies electric power from an AC power supply 11 to the DC load 12. In a period during which the instantaneous value of an input current from the AC power supply 11 is smaller than a prescribed value Ith, the AC-DC converter 1 stops the main switching element S1 and performs electricity conversion in hard switching by the operation of the auxiliary switching element S2.