摘要:
There is disclosed an exhaust processing process of a processing apparatus for processing a substrate or a film, which comprises after the processing of the substrate or the film, introducing a non-reacted gas and/or a by-product into a trap means comprising a filament comprised of a high-melting metal material comprising as a main component at least one of tungsten, molybdenum and rhenium; and processing the non-reacted gas and/or the by-product inside the trap means. This makes it possible to prevent lowering in exhaust conductance, to lengthen the maintenance cycle of the processing apparatus, and to provide a high-quality product (processed substrate or film).
摘要:
There is disclosed an exhaust processing process of a processing apparatus for processing a substrate or a film, which comprises after the processing of the substrate or the film, introducing a non-reacted gas and/or a by-product into a trap means comprising a filament comprised of a high-melting metal material comprising as a main component at least one of tungsten, molybdenum and rhenium; and processing the non-reacted gas and/or the by-product inside the trap means. This makes it possible to prevent lowering in exhaust conductance, to lengthen the maintenance cycle of the processing apparatus, and to provide a high-quality product (processed substrate or film).
摘要:
The deposited-film-forming apparatus of the present invention is an apparatus for forming deposited films while continuously passing a belt-like member through the insides of a plurality of vacuum chambers connected via connecting members and superposingly forming a plurality of different thin films on the surface of the belt-like member by plasma-assisted CVD, wherein the vacuum chambers are fixed to a stand for supporting the vacuum chambers, and a mechanism for relaxing stress acting in the transport direction of the belt-like member, generated in the vacuum chambers by the action of expansion and contraction due to thermal expansion of the vacuum chambers, is provided between each vacuum chamber and each connecting member.
摘要:
A method of manufacturing thin films by plasma CVD is described. This method comprises supplying power to a power electrode in a way such that a self-bias upon plasma discharge of the power applying electrode, which is situated in a plasma discharge space, is a positive potential relative to a ground electrode.
摘要:
A method for manufacturing a photoelectric conversion element containing at least one pin junction, wherein a diffusion preventing layer is provided between an n-type layer and an i-type layer and/or between an i-type layer and a p-type layer, and the diffusion preventing layer is deposited such that deposition temperature differs in its thickness direction.
摘要:
A deposition apparatus of the present invention is arranged so that a surface area of a radio-frequency power applying cathode electrode disposed in a glow discharge space, in a space in contact with discharge is greater than a surface area of the whole of a ground electrode (anode electrode) including a beltlike member in the discharge space. This structure can maintain the potential (self-bias) of the cathode electrode disposed in the glow discharge space automatically at a positive potential with respect to the ground (anode) electrode including the beltlike member. As a result, the bias is applied in the direction of irradiation of ions with positive charge to a deposit film on the beltlike member, so that the ions existing in the plasma discharge are accelerated more efficiently toward the beltlike member, thereby effectively giving energy to the surface of deposit film by ion bombardment. Accordingly, since the structural relaxation of film is promoted even at relatively high deposition rates, a microcrystal semiconductor film can be formed at the relatively high deposition rates with good efficiency, with high uniformity, and with good reproducibility.
摘要:
A film-forming apparatus for forming a non-single crystalline silicon series semiconductor film on a substrate in a film-forming space provided in a vacuum chamber using a very high frequency power supplied through a high frequency power supply means comprising a bar-like shaped electrode, wherein said bar-like shaped electrode is arranged such that the longitudinal direction thereof intersects a direction for said substrate to be moved, and a length of said film-forming space relative to the direction for said substrate to be moved is in a range of from {fraction (1/16)} to ½ of a wavelength of said very high frequency power supplied in said film-forming space. A film-forming method for forming a non-single crystalline silicon series semiconductor film on a substrate using said film-forming apparatus.
摘要:
Provided are a photovoltaic element suitable for practical use, low in cost, high in reliability, and high in photoelectric conversion efficiency, and a fabrication process thereof. In the photovoltaic element having stacked layers of non-single-crystal semiconductors, at least an i-type semiconductor layer and a second conductivity type semiconductor layer are stacked on a first conductivity type semiconductor layer, and the second conduction type semiconductor layer has a layer A formed by exposing the surface of the i-type semiconductor layer to a plasma containing a valence electron controlling agent and a layer B deposited on the layer A by a CVD process using at least the valence electron controlling agent and the main constituent elements of the i-type semiconductor layer.
摘要:
A photovoltaic device comprises a semiconductor region having at least one set of semiconductor layers comprised of a first semiconductor layer having a first conductivity type, an intrinsic or substantially intrinsic second semiconductor layer, and a third semiconductor layer having a conductivity type opposite to that of the first conductivity type, the layers being formed in this order, and first and second electrodes provided such that the electrodes interpose the semiconductor region; wherein the density of a dopant impurity determining the conductivity type of the first semiconductor layer in a set of semiconductor layers which is in contact with the first electrode is varied so as to be lower on the side of the first electrode, or the grain size of crystals in the first semiconductor layer is varied so as to be smaller on the side of the first electrode. This provides a photovoltaic device that does not exhibit great lowering of characteristics even when short circuits locally occur in the semiconductor layers during long-term service.
摘要:
The present invention aims to provide a continuous forming method and apparatus for functional deposited films having excellent characteristics while preventing any mutual mixture of gases between film forming chambers having different pressures, wherein semiconductor layers of desired conductivity type are deposited on a strip-like substrate within a plurality of film forming chambers, by plasma CVD, while the strip-like substrate is moved continuously in a longitudinal direction thereof through the plurality of film forming chambers connected via gas gates having means for introducing a scavenging gas into a slit-like separation passage, characterized in that at least one of the gas gates connecting the i-type layer film forming chamber for forming the semiconductor junction and the n- or p-type layer film forming chamber having higher pressure than the i-type layer film forming chamber has the scavenging gas introducing position disposed on the n- or p-type layer film forming chamber side off from the center of the separation chamber of the gas gate.