Abstract:
The invention relates to a handling system for lifting and/or moving a person from a first position to another. The system includes a frame having a base frame and a lifting frame being part of a lifting device for the person. The system also includes at least three wheels positioned in different parts of the base frame and allowing the handling system to be moved over a surface from said first position to another, and at least one user interface allowing the person or another person to control the handling system. Further, the system includes at least one of the wheels being directional controllable from the at least one user interface and each of the wheels being mounted pivotally around a vertical axle of the wheels. The invention also relates to a user interface and a method of handling a person.
Abstract:
A wavemeter (30) comprises a first wavelength determination unit (40) having a substantially periodic wavelength dependency and being adapted for providing a reference wavelength dependency (100) over a reference wavelength range. A second wavelength determination unit (50) has a substantially periodic wavelength dependency and is adapted for providing a second wavelength dependency (140) over a second wavelength range (120). An evaluation unit (60) compares the second wavelength dependency (140) with the reference wavelength dependency (100) for adjusting (160) the second wavelength dependency (140) in wavelength.
Abstract:
In a method for gauging surfaces (7″), in which a frequency-modulated laser beam is generated, the laser beam is emitted onto the surface as measuring radiation (MS), the measuring radiation (MS) backscattered from the surface (7″) is received and the distance between a reference point and the surface (7″) is measured interferometrically, wherein the measuring radiation (MS) is emitted and received while the surface to be gauged is being scanned, and a measuring arm and a reference interferometer arm with a partially common beam path are used, deviations from the essentially perpendicular impingement of the measuring radiation (MS) on the surface (7″) are taken into account algorithmically during distance measurement and/or are avoided or reduced during scanning by controlling the emission of the measuring radiation (MS).
Abstract:
A distance measuring method for measuring surfaces uses a laser source having a frequency that can be modulated to tune a wavelength of a laser beam in a wavelength range. The laser beam is generated with a coherence length to provide a measuring beam and is emitted at the surface, located within a specified distance range, as a measuring beam. The measuring beam is back-scattered by the surface and is received again and used to interferometrically measure the distance from a reference point to the surface. The specified distance range lies at least partly outside of the coherence length. One portion of the laser beam is temporally delayed with respect to another portion, such that the one optical path difference caused by the delay matches the optical path difference that corresponds to a distance in the specified distance range plus or minus the coherence length of the laser.
Abstract:
A system with a container (1) and a tool holder (20) having two ends (21, 22). One of the ends of the tool holder is adapted to be secured to a machine tool and the other end is adapted for attaching a cutting edge or a cutting edge carrying unit. The tool holder includes an internal cavity (23) surrounded by a cavity wall. The cavity accommodates the container. One end of the cavity is adapted for connection to a supply for a cooling medium and the other end is connected to an outlet for cooling medium. The cavity furthermore includes an opening (25) for installation of the container. At least one gap for leading the cooling medium is formed between the container and the cavity wall. The container can be installed in a machine tool, and the container can be used to accommodate one or several sensors for measuring parameters or for receiving a damping system.
Abstract:
A coordinate measurement instrument includes an optical distance measurement device (200, 300) for measuring the distance from an auxiliary measurement means (5) which can move in space, a zoom camera (106), which can rotate with respect to at least two axes, with a zoom lens, and an overview camera (104) for coarse localization of the auxiliary measurement means (5). A light exit and light receiving optical system (101, 102) of the distance measurement device (200, 300), the zoom camera (106) and the overview camera (104) are arranged on a shared carrier (1) which can rotate with respect to at least two axes (A, Z). The optical axis (111) of the distance measurement device (200, 300) and the optical axis of the overview camera (104), preferably extend coaxially outside the coordinate measurement instrument. Sub-units of the distance measurement devices (200, 300) are, preferably, arranged on the carrier (1) and on the rotatable intermediate unit (2) and are connected to each other by means of optical waveguides (501-508).
Abstract:
The invention relates to an optical sensor element for a measuring machine, comprising a coupling element on the sensor element side for mechanically and optically connecting to a coupling element on the measuring machine side. An optical fiber is arranged in the coupling element on the sensor element side, wherein said optical fiber comprises an optical interface for connecting to an optical machine contact element of the measuring machine, wherein said optical interface is formed by an optical sensor contact element having a self-centering ferrule that encloses the end of the optical fiber. The ferrule is supported in the coupling element on the sensor element side in a floating manner.
Abstract:
A laser scanner for detecting spatial surroundings comprises a stator (21), a rotor (1), mounted on the stator (21) to be rotatable about a first rotational axis, and a rotary body (2), mounted on the rotor (1) to be rotatable about a second rotational axis. A laser source (6) and a detector (7) are arranged in the rotor (1). One optical link (9) each is configured on the second rotational axis on every side of the rotary body (2) between the rotor (1) and the rotary body (2) so that emission light can be introduced by the laser source into the rotary body (2) via the first optical link (8) and reception light can be discharge from the rotary body (2) via the second optical link (9). A first rotary drive (25) drives the rotor (21) and a second rotary drive (26) drives the rotary body (2). Two goniometers (4) and evaluation electronics (5) which are connected to the laser source (6) and the detector (7) allow association of a detected distance with a corresponding direction. The rotary body (2) can have a very compact design, is completely passive and therefore does not require any power supply or transmission of signals.
Abstract:
A system and method are disclosed for monitoring environmental conditions of a perishable product. The system includes an environmental sensor configured to sense one or more environmental conditions of the perishable product and an analog integrator in communication with the environmental sensor, the analog integrator being formed on a polymer substrate and including one or more tunable components. The system also includes a comparator in communication with the analog integrator and configured to change state when an output of the analog integrator reaches a selected threshold level, and a control module in communication with the comparator and the analog integrator. The control module is configured to control the operation of the analog integrator based on an output of the comparator.
Abstract:
A coordinate measurement instrument includes an optical distance measurement device (200, 300) for measuring the distance from an auxiliary measurement means (5) which can move in space, a zoom camera (106), which can rotate with respect to at least two axes, with a zoom lens, and an overview camera (104) for coarse localization of the auxiliary measurement means (5). A light exit and light receiving optical system (101, 102) of the distance measurement device (200, 300), the zoom camera (106) and the overview camera (104) are arranged on a shared carrier (1) which can rotate with respect to at least two axes (A, Z). The optical axis (111) of the distance measurement device (200, 300) and the optical axis of the overview camera (104), preferably extend coaxially outside the coordinate measurement instrument. Sub-units of the distance measurement devices (200, 300) are, preferably, arranged on the carrier (1) and on the rotatable intermediate unit (2) and are connected to each other by means of optical waveguides (501-508).