摘要:
A semiconductor device according to the present invention comprises a silicon substrate, a gate electrode formed on a main surface of the silicon substrate with a gate insulation film therethrough, a sidewall spacer formed so as to cover a side surface of the gate electrode and including at least two layers of a silicon oxide film as a lowermost layer and a silicon nitride film formed thereon, a source region and a drain region formed in the main surface of the silicon substrate so as to sandwich the gate electrode, a protection film formed so as to cover an end surface of the silicon oxide film without extending below said silicon nitride film, the end surface being on a side of said source region and said drain region, and a metal silicide layer formed in the source region and the drain region on a side of said protection film away from said gate electrode.
摘要:
According to a semiconductor device and a method of manufacturing thereof, a sidewall spacer is formed at a sidewall of a contact hole, in a recess portion defined by the sidewall of the contact hole and a buried conductive layer, having a film thickness gradually increasing from a top face corner of an interlayer insulation film to the surface of the buried conductive layer. Therefore, a semiconductor device that can achieve favorable breakdown voltage and anti-leak characteristics between a lower electrode layer and an upper electrode layer forming a capacitor of a DRAM.
摘要:
According to a semiconductor device and a method of manufacturing thereof, a sidewall spacer is formed at a sidewall of a contact hole, in a recess portion defined by the sidewall of the contact hole and a buried conductive layer, having a film thickness gradually increasing from a top face corner of an interlayer insulation film to the surface of the buried conductive layer. Therefore, a semiconductor device that can achieve favorable breakdown voltage and anti-leak characteristics between a lower electrode layer and an upper electrode layer forming a capacitor of a DRAM.
摘要:
There is provided a semiconductor device having a metal silicide layer which can suppress the malfunction and the increase in power consumption of the device. The semiconductor device has a semiconductor substrate containing silicon and having a main surface, first and second impurity diffusion layers formed in the main surface of the semiconductor substrate, a metal silicide formed over the second impurity diffusion layer, and a silicon nitride film and a first interlayer insulation film sequentially stacked over the metal silicide. In the semiconductor device, a contact hole penetrating through the silicon nitride film and the first interlayer insulation film, and reaching the surface of the metal silicide is formed. The thickness of a portion of the metal silicide situated immediately under the contact hole is smaller than the thickness of a portion of the metal silicide situated around the contact hole.
摘要:
An N-type source region and an N-type drain region of N-channel type MISFETs are implanted with ions (containing at least one of F, Si, C, Ge, Ne, Ar and Kr) with P-channel type MISFETs being covered by a mask layer. Then, each gate electrode, source region and drain region of the N- and P-channel type MISFETs are subjected to silicidation (containing at least one of Ni, Ti, Co, Pd, Pt and Er). This can suppress a drain-to-body off-leakage current (substrate leakage current) in the N-channel type MISFETs without degrading the drain-to-body off-leakage current in the P-channel type MISFETs.
摘要:
An N-type source region and an N-type drain region of N-channel type MISFETs are implanted with ions (containing at least one of F, Si, C, Ge, Ne, Ar and Kr) with P-channel type MISFETs being covered by a mask layer. Then, each gate electrode, source region and drain region of the N- and P-channel type MISFETs are subjected to silicidation (containing at least one of Ni, Ti, Co, Pd, Pt and Er). This can suppress a drain-to-body off-leakage current (substrate leakage current) in the N-channel type MISFETs without degrading the drain-to-body off-leakage current in the P-channel type MISFETs.
摘要:
A first interlayer insulating film having a second contact hole is formed on a main surface of a semiconductor substrate 1 in a peripheral circuitry. A second plug electrode of the same material as a first plug electrode in a memory cell array is formed in the second contact hole. A pad layer is formed over the second plug electrode and a top surface of the first interlayer insulating film. The pad layer and a capacitor lower electrode are made of the same material. The pad layer is covered with the second interlayer insulating film. A third contact hole is formed at a portion of the second interlayer insulating film located above the pad layer. A first aluminum interconnection layer is formed in the third contact hole. Thereby, a contact can be formed easily between the interconnection layer and the main surface of the semiconductor substrate in the peripheral circuitry of a DRAM, and a manufacturing process can be simplified.
摘要:
According to a semiconductor device and a method of manufacturing thereof, a sidewall spacer is formed at a sidewall of a contact hole, in a recess portion defined by the sidewall of the contact hole and a buried conductive layer, having a film thickness gradually increasing from a top face corner of an interlayer insulation film to the surface of the buried conductive layer. Therefore, a semiconductor device that can achieve favorable breakdown voltage and anti-leak characteristics between a lower electrode layer and an upper electrode layer forming a capacitor of a DRAM.
摘要:
An object of the invention is to provide a semiconductor device which has a capacitor having good anti-leak characteristics and good breakdown voltage characteristics and is suitable to high integration. Source/drain regions (25) are formed at a surface of a silicon substrate (31). Interlayer insulating films (1) and (3) having contact holes (1a) and (3a), through which a surfaces of the source/drain region is partially exposed, is formed on the surface of silicon substrate (31). Contact holes (1a) and (3a) are filled with plug layer (9a). A capacitor (20) having a highly dielectric film (15) is formed such that it is electrically connected to source/drain region (25) through plug layer (9a). The interlayer insulating film is formed of a two-layer structure including a silicon oxide film (1) and a silicon nitride film (3). Silicon nitride film (3) and plug layer (9a) have the top surfaces flush with each other.
摘要:
To improve the performance of semiconductor devices. Over an n+-type semiconductor region for source/drain of an n-channel type MISFET and a first gate electrode, and over a p+-type semiconductor region for source/drain of a p-channel type MISFET and a second gate electrode, which are formed over a semiconductor substrate, a metal silicide layer including nickel platinum silicide is formed by a salicide process. After that, a tensile stress film is formed over the whole face of the semiconductor substrate, and then the tensile stress film over the p-channel type MISFET is removed by dry-etching, and, after a compression stress film is formed over the whole face of the semiconductor substrate, the compression stress film over the n-channel type MISFET is removed by dry-etching. The Pt concentration in the metal silicide layer is highest at the surface, and becomes lower as the depth from the surface increases.