摘要:
An n-GaAs buffer layer, an n-AlGaAs lower cladding layer, an n- or i-InGaP lower optical waveguide layer, an InGaAsP quantum cell active layer, a p- or i-InGaP upper optical waveguide layer, a p-AlGaAs first upper cladding layer, a p- or i-InGaP etch-stopping layer, a p-AlGaAs second upper cladding layer, and a p-GaAs contact layer, are grown upon an n-GaAs substrate. A photoresist is coated on the wafer, and two grooves are formed by etching. Then, the photoresist on the perimeter of the device is removed and the contact layer is selectively etched. Next, the photoresist is lifted off. A SiO2 film is formed on the entire surface. After a window is formed in a portion of the SiO2 film corresponding to a ridge portion, a p-electrode is formed on a region of the SiO2 film other than the device perimeter.
摘要:
An n-GaAs buffer layer, an n-AlGaAs lower cladding layer, an n- or i-InGaP lower optical waveguide layer, an InGaAsP quantum cell active layer, a p- or i-InGaP upper optical waveguide layer, a p-AlGaAs first upper cladding layer, a p- or i-InGaP etch-stopping layer, a p-AlGaAs second upper cladding layer, and a p-GaAs contact layer, are grown upon an n-GaAs substrate. A photoresist is coated on the wafer, and two grooves are formed by etching. Then, the photoresist on the perimeter of the device is removed and the contact layer is selectively etched. Next, the photoresist is lifted off. A SiO2 film is formed on the entire surface. After a window is formed in a portion of the SiO2 film corresponding to a ridge portion, a p-electrode is formed on a region of the SiO2 film other than the device perimeter.
摘要:
In a semiconductor laser device including having an index-guided structure and oscillating in a fundamental transverse mode, a lower cladding layer, a lower optical waveguide layer, a quantum well layer, an upper optical waveguide layer, and a current confinement structure are formed in this order. The thickness of the upper optical waveguide layer is smaller than the thickness of the lower optical waveguide layer. In addition, the sum of the thicknesses of the upper and lower optical waveguide layers may be 0.5 micrometers or greater. Further, the distance between the bottom of the current confinement structure and the upper surface of the quantum well layer may be smaller than 0.25 micrometers.
摘要:
A semiconductor laser device improves reliability during high-power oscillation. An n-type GaAs buffer layer, an n-type In0.48Ga0.52P lower cladding layer, an n-type or i-type Inx1Ga1−x1As1−y1Py1 optical waveguide layer, an i-type GaAs1−y2Py2 tensile-strain barrier layer, an Inx3Ga1−3As1−y3Py3 compressive-strain quantum-well active layer, an i-type GaAs1−y2Py2 tensile-strain barrier layer, a p-type or i-type Inx1Ga1−x1As1−y1Py1 upper optical waveguide layer, a p-type In0.48Ga0.52P first upper cladding layer, a GaAs etching stop layer, a p-type In0.48Ga0.52P second upper cladding layer, and a p-type GaAs contact layer are grown on a plane of an n-type GaAs substrate. Two ridge trenches are formed on the resultant structure, and current non-injection regions are formed by removing the p-type GaAs contact layer in portions extending inwardly by 30 &mgr;m from cleavage positions of edge facets of the resonator on a top face of a ridge portion between the ridge trenches.
摘要:
In a semiconductor laser device: an n-type In0.49Ga0.51P cladding layer, an undoped or n-type Inx1Ga1-x1As1-y1Py1 optical waveguide layer, an Inx3Ga1-x3As1-y3Py3 compressive-strain quantum-well active layer, an undoped or p-type Inx1Ga1-x1As1-y1Py1 optical waveguide layer, a p-type In0.49Ga0.51P cladding layer, and a p-type GaAs etching stop layer are formed on an n-type GaAs substrate; a p-type Inx8Ga1-x8P etching stop layer and an n-type GaAs current confinement layer are formed corresponding to high-refractive-index regions which realize an ARROW structure; a p-type Inx9Ga1-x9P etching stop layer is formed over the n-type GaAs current confinement layer and exposed areas of the first etching stop layer; a p-type GaAs etching stop layer and an n-type In0.49Ga0.51P current confinement layer are formed in regions other than a current injection region; and a p-type In0.49Ga0.51P cladding layer and a p-type GaAs contact layer are formed over the entire upper surface.
摘要:
In a semiconductor laser device including an active region which is made of an aluminum-free material and a plurality of cladding layers made of at least one AlGaAs or AlGaInP material, the active region includes a quantum well layer and at least one optical waveguide layer; a portion of the at least one optical waveguide layer located on one side of the quantum well layer has a thickness of 0.25 &mgr;m or more; and the at least one optical waveguide layer, other than a portion of the at least one optical waveguide layer being located near the quantum well layer and having a thickness of at least 10 nm, is doped with impurity of 1017 cm−3 or more.
摘要翻译:在包括由无铝材料制成的有源区和由至少一种AlGaAs或AlGaInP材料制成的多个覆层的半导体激光器件中,有源区包括量子阱层和至少一个光波导层; 位于量子阱层的一侧的至少一个光波导层的一部分具有0.25μm以上的厚度; 并且所述至少一个光波导层,除了所述至少一个光波导层的位于所述量子阱层附近并且具有至少10nm的厚度的部分之外,掺杂有10 17 cm -1的杂质, 3>以上。
摘要:
In a semiconductor laser device having an InGaAsP compressive strain quantum well active layer, an InGaAsP first upper optical waveguide layer formed on the active layer, and a current confinement layer which is formed above the first upper optical waveguide layer and includes a stripe groove. An AlGaAs second upper optical waveguide layer having an approximately identical refractive index to that of the first upper optical waveguide layer covers the current confinement layer and the stripe groove. The product of the strain and the thickness of the active layer does not exceed 0.25 nm. All the layers other than the compressive strain quantum well active layer lattice-match with GaAs. An AlGaAs or InGaAsP upper cladding layer formed above the second upper optical waveguide layer has an approximately identical refractive index to that of a lower cladding layer formed under the active layer.
摘要:
A first resist layer (21) and a second resist layer (22) are formed on a base material (11) in the recited order, the first resist layer (21) being removable by etching and the second resist layer (22) being a photosensitive resist layer in which either exposed or unexposed regions become soluble in a developing solvent upon emission of light. Near-field light is then emitted to the second resist layer (22) by means (24) for emitting near-field light (27) according to a diffraction grating pattern upon reception of the light. Next, the diffraction grating pattern is formed in the second resist layer (22) by developing the second resist layer (22). The first resist layer (21) is etched with the pattern in the second resist layer (22) as an etching mask, and a diffraction grating pattern consisting of the first and second resist layers (21, 22) is formed. Finally, a diffraction grating is formed in the base material (11) by etching the base material (11) with the pattern in the first and second resist layers (21, 22) as an etching mask.
摘要:
A III-V group semiconductor laser includes a first clad layer, a first optical waveguide layer, a first barrier layer, an active layer, a second barrier layer, a second optical waveguide layer and a second clad layer formed in this order on a GaAs substrate which is a III-V group compound semiconductor. Each of the first and second clad layers and the first and second optical waveguide layers is of a composition which matches with the GaAs substrate in lattice. The active layer is of a composition which induces compressive strain on the GaAs substrate. Each of the first and second barrier layers is of a composition which induces tensile strain on the GaAs substrate, thereby compensating for the compressive strain induced in the active layer. The ratio of V group elements contained in the first optical waveguide layer is the same as that in the first barrier layer, and the ratio of V group elements contained in the second optical waveguide layer is the same as that in the second barrier layer.