摘要:
A semiconductor optical element includes: a first conductivity type semiconductor substrate; and a laminated body disposed on the first conductivity type semiconductor substrate. The laminated body includes, in the following order from a side of the first conductivity type semiconductor substrate: a first conductivity type semiconductor layer; an active layer; a second conductivity type semiconductor layer; and a second conductivity type contact layer. The second conductivity type semiconductor layer includes: a carbon-doped semiconductor layer in which carbon is doped as a dopant in a compound semiconductor; and a group 2 element-doped semiconductor layer in which a group 2 element is doped as a dopant in a compound semiconductor. The carbon-doped semiconductor layer is disposed at a position closer to the active layer than the group 2 element-doped semiconductor layer.
摘要:
A light emitting device includes a first active layer on a substrate, a current spreading length, and a plurality of mesa regions on the first active layer. At least a first portion of the first active layer can comprise a first electrical polarity. Each mesa region can include, at least a second portion of the first active layer, a light emitting region on the second portion of the first active layer with a dimension parallel to the substrate smaller than twice the current spreading length, and a second active layer on the light emitting region. The light emitting region can be configured to emit light with a target wavelength from 200 nm to 300 nm. At least a portion of the second active layer can comprise a second electrical polarity.
摘要:
In one example, a device includes a layered semiconductor material having material defects formed therein and an optoelectronic device formed in the layered semiconductor material. The optoelectronic device includes an active region comprising an aperture formed through the layered semiconductor material. The aperture is formed in a manner that avoids intersection with the material defects.
摘要:
An edge-emitting semiconductor laser and a method for operating a semiconductor laser are disclosed. In an embodiment, the edge-emitting semiconductor laser includes an active zone within a semiconductor layer sequence and a stress layer. The active zone is configured for being energized only in a longitudinal strip perpendicular to a growth direction of the semiconductor layer sequence. The semiconductor layer sequence has a constant thickness throughout in the region of the longitudinal strip so that the semiconductor laser is gain-guided. The stress layer may locally stress the semiconductor layer sequence in a direction perpendicular to the longitudinal strip and in a direction perpendicular to the growth direction. A refractive index of the semiconductor layer sequence, in regions which, seen in plan view, are located next to the longitudinal strip, for the laser radiation generated during operation is reduced by at least 2×10−4 and by at most 5×10−3.
摘要:
A semiconductor laser device includes an n-type nitride semiconductor layer; a first layer disposed above the n-type nitride semiconductor and composed of InaGa1-aN (0≦a
摘要:
A quantum cascade laser and method of making are disclosed. The quantum cascade laser includes a plurality stages configured in a cascade structure, each stage having a quantum well emission layer and an injection layer, each stage having an upper laser level and a lower laser level. A scattering barrier is located in the quantum well emission layer, the scattering barrier being positioned such that interface roughness (IFR) scattering at the lower laser level is greater than IFR scattering at the upper laser level. The scattering barrier may be located to maximize IFR scattering for the lower laser level and/or minimize IFR scattering for the upper laser level.
摘要:
A semiconductor laser diode comprises a semiconductor body having an n-region and a p-region laterally spaced apart within the semiconductor body. The laser diode is provided with an active region between the n-region and the p-region having a front end and a back end section, an n-metallization layer located adjacent the n-region and having a first injector for injecting current into the active region, and a p-metallization layer opposite to the n-metallization layer and adjacent the p-region and having a second injector for injecting current into the active region. The thickness and/or width of at least one metallization layer is chosen so as to control the current injection in a part of the active region near at least one end of the active region compared to the current injection in another part of the active region. The width of the at least one metallization layer is larger than a width of the active region. This arrangement results in substantially uniform current distribution near the front end of the active region. Advantageously, this uniform current density significantly improves the reliability of the laser diode.
摘要:
A laser diode and method for fabricating same, wherein the laser diode generally comprises an InGaN compliance layer on a GaN n-type contact layer and an AlGaN/GaN n-type strained super lattice (SLS) on the compliance layer. An n-type GaN separate confinement heterostructure (SCH) is on said n-type SLS and an InGaN multiple quantum well (MQW) active region is on the n-type SCH. A GaN p-type SCH on the MQW active region, an AlGaN/GaN p-type SLS is on the p-type SCH, and a p-type GaN contact layer is on the p-type SLS. The compliance layer has an In percentage that reduces strain between the n-type contact layer and the n-type SLS compared to a laser diode without the compliance layer. Accordingly, the n-type SLS can be grown with an increased Al percentage to increase the index of refraction. This along with other features allows for reduced threshold current and voltage operation.
摘要翻译:一种激光二极管及其制造方法,其中激光二极管通常包括在GaN n型接触层上的InGaN柔性层和在柔性层上的AlGaN / GaN n型应变超晶格(SLS)。 n型GaN分离限制异质结构(SCH)在所述n型SLS上,并且InGaN多量子阱(MQW)有源区在n型SCH上。 在MQW有源区上的GaN p型SCH,AlGaN / GaN p型SLS在p型SCH上,p型GaN接触层在p型SLS上。 顺应层具有与不具有柔顺层的激光二极管相比,n型接触层和n型SLS之间的应变的In百分比。 因此,n型SLS可以以增加的Al百分数生长以增加折射率。 这与其他功能一起允许降低阈值电流和电压操作。
摘要:
A laser diode capable of reducing a radiating angle θ⊥ in the vertical direction, an optical pickup device, an optical disk apparatus, and optical communications equipment, all equipped with the laser diode which increases optical coupling efficiency. It has a first cladding layer of the first conductive type formed on a substrate, with an active layer on top of the first cladding layer and a second cladding layer of the second conductive type on top of the active layer. In at least the first or second cladding layer, it is formed of at least one optical guide layer having a higher refractive index than the first or second cladding layer and operating to expand a beam waist in the waveguide. This operation contributes to widening a region in which to shut up light, enabling a radiating angle θ⊥ in the vertical direction to be reduced.
摘要:
An edge emitting semiconductor laser (1) is specified, comprising an n-side waveguide region (21) and a p-side waveguide region (22); an active zone (20) for generating electromagnetic radiation; at least one reflection layer (24) in the n-side waveguide region (21), wherein the active zone (20) is arranged between the two waveguide regions (21, 22), the thickness of the n-side waveguide region (21) is greater than that of the p-side waveguide region (22), the refractive index of the reflection layer (24) is less than the refractive index of the n-side waveguide region (21) adjoining the reflection layer (24).