摘要:
A multilayer stack displaying a red omnidirectional structural color. The multilayer stack includes a reflector layer, a dielectric layer extending across the reflector layer, and an absorbing layer extending across the dielectric layer. The dielectric layer reflects more than 70% of incident white light that has a wavelength greater than 580 nanometers (nm). In addition, the absorbing layer absorbs more than 70% of the incident white light with a wavelength less than 580 nm. In combination, the reflector layer, dielectric layer, and absorbing layer form an omnidirectional reflector that reflects a narrow band of electromagnetic radiation with a center wavelength between 580-680 nm, has a width of less than 200 nm wide and a color shift of less than 100 nm when the reflector is viewed from angles between 0 and 45 degrees.
摘要:
Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
摘要:
Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
摘要:
Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
摘要:
Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
摘要:
A substrate or coating is provided that includes a lipase with enzymatic activity toward a component of a fingerprint. Also provided is a process for facilitating the removal of fingerprints is provided wherein an inventive substrate or coating including a lipase is capable of enzymatically degrading of one or more components of the fingerprint to facilitate fingerprint removal from the substrate or said coating. Applying heat to the substrate or coating increases the rate of fingerprint removal.
摘要:
A substrate or coating is provided that includes a lipase with enzymatic activity toward a component of a fingerprint. Also provided is a process for facilitating the removal of fingerprints is provided wherein an inventive substrate or coating including a lipase is capable of enzymatically degrading of one or more components of the fingerprint to facilitate fingerprint removal from the substrate or said coating. Applying heat to the substrate or coating increases the rate of fingerprint removal.
摘要:
A substrate or coating is provided that includes a lipase with enzymatic activity toward a component of a fingerprint. Also provided is a process for facilitating the removal of fingerprints is provided wherein an inventive substrate or coating including a lipase is capable of enzymatically degrading of one or more components of the fingerprint to facilitate fingerprint removal from the substrate or said coating. Applying heat to the substrate or coating increases the rate of fingerprint removal.
摘要:
A multilayer stack displaying a red omnidirectional structural color. The multilayer stack includes a core layer, a semiconductor layer extending across the core layer, and a dielectric layer extending across the semiconductor layer. The semiconductor layer absorbs more than 70% of incident white light that has a wavelength less than 550 nanometers (nm). In addition, the dielectric layer in combination with the core layer reflects more than 70% of the incident white light with a wavelength greater than 550 nm. In combination, the core layer, semiconductor layer and dielectric layer form an omnidirectional reflector that reflects a narrow band of electromagnetic radiation with a center wavelength between 550-700 nm, has a width of less than 200 nm wide and a color shift of less than 100 nm when the reflector is viewed from angles between 0 and 45 degrees.
摘要:
Protein-polymer composite materials are provided according to embodiments of the present invention that include an admixture of a polymer resin, a surfactant and a non-aqueous organic solvent. An aqueous solution containing bioactive proteins is mixed with the admixture. The emulsion is mixed with a crosslinker to produce a curable composition. The curable composition is cured, thereby producing the protein-polymer composite material that is useful for facilitating removal of bioorganic stains.