摘要:
The present invention provides a semiconductor light-emitting element comprising an electrode part excellent in ohmic contact and capable of emitting light from the whole surface. An electrode layer placed on the light-extraction side comprises a metal part and plural openings. The metal part is so continuous that any pair of point-positions in the part is continuously connected without breaks, and the metal part in 95% or more of the whole area continues linearly without breaks by the openings in a straight distance of not more than ⅓ of the wavelength of light emitted from an active layer. The average opening diameter is of 10 nm to ⅓ of the wavelength of emitted light. The electrode layer has a thickness of 10 nm to 200 nm, and is in good ohmic contact with a semiconductor layer.
摘要:
The present invention provides a semiconductor light-emitting element comprising an electrode part excellent in ohmic contact and capable of emitting light from the whole surface. An electrode layer placed on the light-extraction side comprises a metal part and plural openings. The metal part is so continuous that any pair of point-positions in the part is continuously connected without breaks, and the metal part in 95% or more of the whole area continues linearly without breaks by the openings in a straight distance of not more than ⅓ of the wavelength of light emitted from an active layer. The average opening diameter is of 10 nm to ⅓ of the wavelength of emitted light. The electrode layer has a thickness of 10 nm to 200 nm, and is in good ohmic contact with a semiconductor layer.
摘要:
The present invention provides a semiconductor light-emitting element comprising an electrode part excellent in ohmic contact and capable of emitting light from the whole surface. An electrode layer placed on the light-extraction side comprises a metal part and plural openings. The metal part is so continuous that any pair of point-positions in the part is continuously connected without breaks, and the metal part in 95% or more of the whole area continues linearly without breaks by the openings in a straight distance of not more than ⅓ of the wavelength of light emitted from an active layer. The average opening diameter is of 10 nm to ⅓ of the wavelength of emitted light. The electrode layer has a thickness of 10 nm to 200 nm, and is in good ohmic contact with a semiconductor layer.
摘要:
A solar cell includes: a first electrode layer formed on a substrate; a generating layer formed on the first electrode layer; and a second electrode layer formed on the generating layer, at least one of the first electrode layer and the second electrode layer being a metal electrode layer having optical transparency, the metal electrode layer having a plurality of openings that penetrate through the metal electrode layer. The metal electrode layer includes metal parts, any two metal parts of the metal electrode layer continues to each other without a cut portion, the metal electrode layer has a film thickness in the range of 10 nm to 200 nm, and sizes of the openings are equal to or smaller than ½ of the wavelength of light to be used for generating electricity.
摘要:
The Present invention provides an organic EL display and a lighting device having high efficiency. The organic EL display comprises a substrate, a pixel-driving circuit unit, and pixels arranged in the form of a matrix on the substrate. The pixel comprises a light-emitting part, and the light-emitting part is composed of a first electrode placed near to the substrate, a second electrode placed far from the substrate, and at least one organic layer placed between the first and second electrodes. The second electrode has a metal electrode layer having a thickness of 10 nm to 200 nm, and the metal electrode layer comprises a metal part and plural openings penetrating through the layer. The metal part is seamless and formed of metal continuously connected without breaks between any points therein. The openings have an average opening diameter of 10 nm to 780 nm, and are arranged so periodically that the distribution of the arrangement is represented by a radial distribution function curve having a half-width of 5 nm to 300 nm.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes a first electrode layer having electrical continuity with the first semiconductor layer and a second electrode layer provided on the second semiconductor layer, the second electrode layer including a metal portion having a thickness not less than 10 nanometers and not more than 100 nanometers along a direction from the first semiconductor layer to the second semiconductor layer. A plurality of apertures penetrates the metal portion along the direction, each of the apertures viewed along the direction having equivalent circle diameters of not less than 10 nanometers and not more than 5 micrometers, and a Schottky barrier is provided between the second semiconductor layer and the metal portion.
摘要:
According to one embodiment, a semiconductor light emitting device includes a structure, a first electrode layer, and a second electrode layer. The structure includes a first semiconductor layer, a second semiconductor layer and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The first electrode layer is provided on the first semiconductor layer side of the structure. The first electrode layer is made of metal and contains a portion contacting the first semiconductor layer. The second electrode layer is provided on the second semiconductor layer side of the structure. The second electrode layer has a metal portion with a thickness of not less than 10 nanometers and not more than 50 nanometers, and a plurality of openings piercing the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers.
摘要:
According to one embodiment, a semiconductor light emitting device includes a structure, a first electrode layer, and a second electrode layer. The structure includes a first semiconductor layer, a second semiconductor layer and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The first electrode layer is provided on the first semiconductor layer side of the structure. The first electrode layer is made of metal and contains a portion contacting the first semiconductor layer. The second electrode layer is provided on the second semiconductor layer side of the structure. The second electrode layer has a metal portion with a thickness of not less than 10 nanometers and not more than 50 nanometers, and a plurality of openings piercing the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers.
摘要:
A semiconductor light emitting device includes a structural body, a first electrode layer, and a second electrode layer. The structural body includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer between the first semiconductor layer and the second semiconductor layer. The first electrode layer includes a metal portion, a plurality of first opening portions, and at least one second opening portion. The metal portion has a thickness of not less than 10 nanometers and not more than 200 nanometers along a direction from the first semiconductor layer toward the second semiconductor layer. The plurality of first opening portions each have a circle equivalent diameter of not less than 10 nanometers and not more than 1 micrometer. The at least one second opening portion has a circle equivalent diameter of more than 1 micrometer and not more than 30 micrometers.
摘要:
A semiconductor light-emitting device according to the embodiment includes a substrate, a compound semiconductor layer, a metal electrode layer provided with particular openings, a light-extraction layer, and a counter electrode. The light-extraction layer has a thickness of 20 to 120 nm and covers at least partly the metal part of the metal electrode layer; or otherwise the light-extraction layer has a rugged structure and covers at least partly the metal part of the metal electrode layer. The rugged structure has projections so arranged that their summits are positioned at intervals of 100 to 600 nm, and the heights of the summits from the surface of the metal electrode layer are 200 to 700 nm.