摘要:
A semiconductor device includes an active region formed in an upper layer portion of a semiconductor layer of a first conductivity type, and a plurality of electric field relaxation layers disposed from an edge of the active region toward the outside so as to surround the active region. The plurality of electric field relaxation layers include a plurality of first electric field relaxation layers and a plurality of second electric field relaxation layers alternately disposed adjacent to each other, the first electric field relaxation layer and the second electric field relaxation layer adjacent to each other forming a set. Impurities of a second conductivity type are implanted to the first electric field relaxation layers at a first surface density, widths of which becoming smaller as apart from the active region. Impurities of the second conductivity type are implanted to the second electric field relaxation layers at a second surface density lower than the first surface density, widths of which becoming larger as apart from the active region.
摘要:
A RESURF layer including a plurality of P-type implantation layers having a low concentration of P-type impurity is formed adjacent to an active region. The RESURF layer includes a first RESURF layer, a second RESURF layer, a third RESURF layer, a fourth RESURF layer, and a fifth RESURF layer that are arranged sequentially from the P-type base side so as to surround the P-type base. The second RESURF layer is configured with small regions having an implantation amount equal to that of the first RESURF layer and small regions having an implantation amount equal to that of the third RESURF layer being alternately arranged in multiple. The fourth RESURF layer is configured with small regions having an implantation amount equal to that of the third RESURF layer and small regions having an implantation amount equal to that of the fifth RESURF layer being alternately arranged in multiple.
摘要:
A semiconductor device capable of suppressing generation of a high electric field and preventing a dielectric breakdown from occurring, and a method of manufacturing the same. The method of manufacturing a semiconductor device includes (a) preparing an n+ substrate to be a ground constituted by a silicon carbide semiconductor of a first conductivity type, (b) forming a recess structure surrounding an element region on the n+ substrate by using a resist pattern, and (d) forming a guard ring injection layer to be an impurity layer of a second conductivity type in a recess bottom surface and a recess side surface in the recess structure by impurity injection through the resist pattern, and a corner portion of the recess structure is covered with the impurity layer.
摘要:
The termination region includes a ring region (LNFLR). A plurality of ring-shaped P-type ring layers (12a˜120 are regularly arranged in the ring region (LNFLR). The ring region (LNFLR) is divided into a plurality of units which include the plurality of P-type ring layers (12a˜120 respectively. A width of each unit is constant. A total number of P-type impurities in the ring region (LNFLR) is N, the target withstand voltage is BV [V], a width of each unit is SandL [μm], and the number of the plurality of units is num, following relationships are satisfied. N≧(M×BV)γ, M=104 to 105, γ=0.55 to 1.95, SandL×num×Ecri≧2×α×BV, Ecri=2.0 to 3.0×105 [V/cm], α=100 to 101. Widths of the P-type ring layers (12a˜12f) of the plurality of units linearly decrease toward an outside of the termination region.
摘要:
This invention provides a power amplifier device that satisfies both of delivering a high output and reducing the chip area occupied by the power amplifier device. The power amplifier device formed over a substrate comprises primary inductors arranged in a generally circular geometry, a ground pattern, transistor pairs, and a secondary inductor. The ground pattern is provided to extend from a portion of a region inside the circular primary inductor into regions outside the primary inductor, when viewed from the direction perpendicular to the substrate, and grounded at a plurality of points in the regions outside the primary inductor. To both ends of each primary inductor, first main electrodes of first and second transistors forming a transistor pair in linkage with the primary inductor are coupled respectively. Second main electrodes of the first and second transistors are coupled to the ground pattern in the region inside the primary inductor and have electrical conduction to the respective plurality of points grounded.
摘要:
A semiconductor device having a high withstand voltage in which a stable withstand voltage can be obtained and a method for manufacturing the same. A JTE region having a second conductivity type is formed in a portion on an outer peripheral end side of an SiC substrate from a second conductivity type SiC region in a vicinal portion of a surface on one of sides in a thickness direction of a first conductivity type SiC epitaxial layer. A first conductivity type SiC region having a higher concentration of an impurity having the first conductivity type than that of the SiC epitaxial layer is formed in at least a vicinal portion of a surface on one of sides in a thickness direction of a portion in which the JTE regions are bonded to each other.
摘要:
A power amplifier device that satisfies both delivering a high output and reducing the chip area occupied by the power amplifier device. Over a substrate, are primary inductors arranged in a generally circular geometry, a ground pattern, transistor pairs, and a secondary inductor. The ground pattern extends from a portion of a region inside the circular primary inductor into regions outside the primary inductor, and grounded at a plurality of points in the regions outside the primary inductor. The primary inductors are coupled to the ground pattern through transistors.
摘要:
The termination region includes a ring region (LNFLR). A plurality of ring-shaped P-type ring layers are regularly arranged in the ring region (LNFLR). The ring region (LNFLR) is divided into a plurality of units which include the plurality of P-type ring layers respectively. A width of each unit is constant. A total number of P-type impurities in the ring region (LNFLR) is N, the target withstand voltage is BV [V], a width of each unit is SandL [μm], and the number of the plurality of units is num, following relationships are satisfied. N≧(M×BV)γ, M=104 to 105, γ=0.55 to 1.95, SandL×num×Ecri≧2×α×BV, Ecri=2.0 to 3.0×105 [V/cm], α=100 to 101. Widths of the P-type ring layers of the plurality of units linearly decrease toward an outside of the termination region.
摘要:
A semiconductor device having a high withstand voltage in which a stable withstand voltage can be obtained and a method for manufacturing the same. A JTE region having a second conductivity type is formed in a port ion on an outer peripheral end side of an SiC substrate from a second conductivity type SiC region in a vicinal portion of a surface on one of sides in a thickness direction of a first conductivity type SiC epitaxial layer. A first conductivity type SiC region having a higher concentration of an impurity having the first conductivity type than that of the SiC epitaxial layer is formed in at least a vicinal portion of a surface on one of sides in a thickness direction of a portion in which the JTE regions are bonded to each other.
摘要:
A semiconductor device capable of suppressing generation of a high electric field and preventing a dielectric breakdown from occurring, and a method of manufacturing the same. The method of manufacturing a semiconductor device includes (a) preparing an n+ substrate to be a ground constituted by a silicon carbide semiconductor of a first conductivity type, (b) forming a recess structure surrounding an element region on the n+ substrate by using a resist pattern, and (c) forming a guard ring injection layer to be an impurity layer of a second conductivity type in a recess bottom surface and a recess side surface in the recess structure by impurity injection through the resist pattern, and a corner portion of the recess structure is covered with the impurity layer.