Abstract:
A nanocellular single crystal nickel based material is provided having a thermal diffusivity in the range of 0.0002 cm{circumflex over ( )}2/s to 0.02 cm{circumflex over ( )}2/s and a thermal conductivity in the range of 0.024 W/mK to 9.4 W/mK. The nanocellular single crystal nickel based material may be used to form turbine engine components. The nanocellular single crystal nickel based material may be produced by providing a first solution containing a nickel precursor and deionized water, providing a second solution containing a structure controlling polymer/surfactant and an alcohol, mixing the first and second solutions into a solution containing a reducing agent to form a third solution, and processing the third solution to create the nanocellular single crystal based material.
Abstract:
A method of fabricating an article includes providing an arrangement of loose nanowires and bonding the loose nanowires in the presence of carbon together into a unitary cellular structure.
Abstract:
A process for coating a gas turbine engine component is disclosed herein. The process comprises applying a bond coat on a substrate of a gas turbine engine. A thermal barrier material is applied to the bond coat. A coating containing polynuclear aluminum oxide/hydroxide clusters is then applied to the thermal barrier material. The polynuclear aluminum oxide/hydroxide clusters are Al13 Keggin clusters having the formula [AlO4Al12(OH)24(H2O)12]7+, or are salts of the Al13 Keggin clusters called Al13 Keggin complexes. A gas turbine engine component comprising a superalloy substrate; a bond coat disposed on the substrate; a thermal barrier material on the bond coat; and a coating containing the polynuclear aluminum oxide/hydroxide clusters on the thermal barrier material is disclosed herein.
Abstract:
A sealing process includes applying a first reactant to a substrate having a porous structure, the first reactant comprising a chromium (III) precursor and a transition metal precursor and applying a second reactant to the first reactant, the second reactant comprising a rare earth element precursor and an alkaline earth element precursor to form reservoirs of trivalent chromium in pore space of the porous structure, and a physical barrier over the substrate and the reservoirs.
Abstract:
A method of fabricating an article includes providing an arrangement of loose nanowires and bonding the loose nanowires in the presence of carbon together into a unitary cellular structure.
Abstract:
A nanocellular single crystal nickel based material is provided having a thermal diffusivity in the range of 0.0002 cm̂2/s to 0.02 cm̂2/s and a thermal conductivity in the range of 0.024 W/mK to 9.4 W/mK. The nanocellular single crystal nickel based material may be used to form turbine engine components. The nanocellular single crystal nickel based material may be produced by providing a first solution containing a nickel precursor and deionized water, providing a second solution containing a structure controlling polymer/surfactant and an alcohol, mixing the first and second solutions into a solution containing a reducing agent to form a third solution, and processing the third solution to create the nanocellular single crystal based material.
Abstract:
A method of treating a carbon electrode includes providing a carbon-based electrode that has a surface with chemically different carbon oxides. The surface is treated with a reducing agent to reduce at least a portion of the oxides to a target carbon oxide. In an aspect, a method of treating a carbon electrode includes providing a carbon-based electrode that has a surface with an initial non-zero concentration of a target carbon oxide. The surface is then treated with a reducing agent to increase the initial non-zero concentration of the target carbon oxide.
Abstract:
A method for making a plurality of metallic nanowires includes combining a metallic precursor with a solvent to form a metallic precursor solution. A quantity of oxalic acid is added to the metallic precursor solution to form a reduction solution. A plurality of nanowires are precipitated out from the reduction solution.
Abstract:
A sealing process includes applying a first reactant to a substrate having a porous structure, the first reactant comprising a chromium (III) precursor and a transition metal precursor and applying a second reactant to the first reactant, the second reactant comprising a rare earth element precursor and an alkaline earth element precursor to form reservoirs of trivalent chromium in pore space of the porous structure, and a physical barrier over the substrate and the reservoirs.
Abstract:
A method of manufacturing a gas turbine engine air seal comprising forming at least one MAX phase particle. The method includes coating the at least one MAX phase particle with a metallic shell. The method includes applying the at least one MAX phase metallic coated particle to a surface of a substrate of the air seal to form an abradable layer of a MAXMET composite abradable material from the at least on MAX phase metallic coated particle.