Abstract:
The present invention discloses a transistor structure for electrostatic discharge protection. The structure includes a substrate, a doped well, a first doped region, a second doped region and a third doped region. The doped well is disposed in the substrate and has a first conductive type. The first doped region is disposed in the substrate, encompassed by the doped well and has the first conductive type. The second doped region is disposed in the substrate, encompassed by the doped well and has a second conductive type. The third doped region is disposed in the substrate, encompassed by the doped well and has the second conductive type. A gap is disposed between the first doped region and the second doped region.
Abstract:
A semiconductor device includes a substrate, a gate positioned on the substrate, a drain region and a source region formed in the substrate at two respectively sides of the gate, a first well region formed in the substrate, and a plurality of first doped islands formed in the source region. The drain region and the source region include a first conductivity, and the first well region and the first doped islands include a second conductivity. The source region is formed in the first well region, and the first doped islands are spaced apart from the first well region.
Abstract:
A fin diode structure includes a doped well formed in a substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well isolated from ins of first conductivity type by STIs, at least one doped region of first conductivity type in the substrate between the fins of first conductivity type, the STIs and the doped well and connecting with the fins of first conductivity type, and at least one doped region of second conductivity type in the substrate between the fins of second conductivity type, the STIs and the doped well and connecting with the fins of second conductivity type. The doping concentration of the fins of first conductivity type is greater than that of the doped region of first conductivity type whose doping concentration is greater than that of the doped well of first conductivity type.
Abstract:
A semiconductor device includes a substrate, a gate positioned on the substrate, a drain region and a source region formed at respective two sides of the gate in the substrate, at least a first doped region formed in the drain region, and at least a first well having the first doped region formed therein. The source region and the drain region include a first conductivity type, the first doped region and the first well include a second conductivity type, and the first conductivity type and the second conductivity type are complementary to each other.
Abstract:
A CMOS device includes a substrate, a pMOS transistor and an nMOS transistor formed on the substrate, and a gated diode. The gated diode includes a floating gate formed on the substrate in between the pMOS transistor and the nMOS transistor and a pair of a p-doped region and an n-doped region formed in the substrate and between the pMOS transistor and the nMOS transistor. The n-doped region is formed between the floating gate and the nMOS transistor, and the p-doped region is formed between the floating gate and the pMOS transistor.
Abstract:
Provided is a lateral BJT including a substrate, a well region, an area, at least one lightly doped region, a first doped region, and a second doped region. The substrate is of a first conductivity type. The well region is of a second conductivity type and is in the substrate. The area is in the well region. The at least one lightly doped region is in the well region below the area. The first doped region and the second doped region are of the first conductivity type and are in the well region on both sides of the area. The first doped region is connected to a cathode. The second doped region is connected to an anode, wherein the doping concentration of the at least one lightly doped region is lower than that of each of the first doped region, the second doped region, and the well region.
Abstract:
The present invention discloses a transistor structure for electrostatic discharge protection. The structure includes a substrate, a doped well, a first doped region, a second doped region and a third doped region. The doped well is disposed in the substrate and has a first conductive type. The first doped region is disposed in the substrate, encompassed by the doped well and has the first conductive type. The second doped region is disposed in the substrate, encompassed by the doped well and has a second conductive type. The third doped region is disposed in the substrate, encompassed by the doped well and has the second conductive type. A gap is disposed between the first doped region and the second doped region.
Abstract:
An electrostatic discharge protection structure includes a semiconductor substrate, a gate structure disposed on the semiconductor substrate, a first well region of a first conductivity type disposed in the semiconductor substrate, a first doped region of the first conductivity type, a second doped region of a second conductivity type, a third doped region of the first conductivity type, and a fourth doped region of the second conductivity type. The first and second doped regions are disposed in the first well region and connected with each other. The second doped region is an emitter of a first bipolar junction transistor. The third and fourth doped regions are disposed in the semiconductor substrate and connected with each other. The third and second doped regions are located at two opposite sides of the gate structure in a first horizontal direction. The third doped region is an emitter of a second bipolar junction transistor.
Abstract:
An electrostatic discharge protection structure includes a semiconductor substrate and a first n-type well region, a p-type well region, a first p-type doped region, a second p-type doped region, and an isolation structure disposed in the semiconductor substrate. The p-type well region is located adjacent to the first n-type well region. The first p-type doped region and the second p-type doped region are located above the first n-type well region and the p-type well region, respectively. A first portion of the isolation structure is located between the first p-type doped region and the second p-type doped region in a horizontal direction. An edge of the first n-type well region is located under the first portion. A distance between the first p-type doped region and the edge of the first n-type well region in the horizontal direction is less than a length of the first portion in the horizontal direction.
Abstract:
A silicon controlled rectifier includes a substrate, an N-type well, a P-type well, a gate structure, a first N-type doped region, a second N-type doped region, a first P-type doped region, a second P-type doped region, a first STI, and a second STI. The N-type well and the P-type well are disposed in the substrate. The gate structure is disposed on the P-type well. The first N-type doped region is disposed in the N-type well at one side of the gate structure. The second N-type doped region is disposed in the P-type well at another side of the gate structure. The first P-type doped region is disposed in the N-type well. The second P-type doped region is disposed in the P-type well. The first STI is between the first N-type and first P-type doped regions. The second STI is between the second N-type and second P-type doped regions.