Abstract:
A method and system for measuring multiple soil properties on-the-go is provided on an implement for traversing a field. An optical module is carried by the implement for collecting soil reflectance data. A pair of soil contact blades protrude from or are embedded in the optical module for collecting soil EC data and soil moisture data. A switching circuit or phase lock loop allows the same soil contact blades to feed signals to both a soil EC signal conditioning circuit and a soil moisture signal conditioning circuit. The soil moisture data can be used to calibrate the soil EC data and the soil reflectance data to compensate for effects of changing soil moisture conditions across a field. The system can also be used on a planter to control planting depth and/or seeding rate in real time based on multiple soil properties collected during planting.
Abstract:
A soil profile sensing and sampling device has a soil probe and a linear actuator for applying downforce to insert the soil probe into the soil. The soil probe can be a soil sensing probe or a soil coring probe. A shuttle system is configured to allow insertion of the soil probe into the soil to a depth that exceeds a stroke length of the linear actuator. The sensing probe can be equipped with a plurality of sensors for sensing soil EC, soil optical reflectance, soil capacitance, and soil compactness. The soil data collected by the sensors can be used in a pedotransfer function to estimate soil bulk density. The soil probe can be operated in an automatic probe sampling sequence to insert the soil probe into the soil when a sampling distance interval has been met and a horizontal speed of the soil probe is approximately zero.
Abstract:
A row crop implement with various sensors for measuring properties of soil while performing normal planting or other operations. The sensors include a plurality of flexible tine assemblies used as electrodes for measuring soil EC. The flexible tine assemblies each have a lower end arranged to contact soil, and an upper end with a coil spring configuration attached to an electrically isolated support structure. The coil spring configuration allows the flexible tine to flex rearwardly to shed residue and clear obstructions. The flexible tine is arranged behind a soil engaging tool, such as an opener assembly or a residue clearing device, with the lower end contacting soil exposed by the soil engaging tool. Other soil sensors on the implement include sensor modules positioned in furrows behind the opener assemblies, and non-contact optical sensors arranged to measure reflectance of soil exposed by the opener assemblies.
Abstract:
A system for measuring soil properties on-the-go uses soil-engaging components of an existing farm implement as electrodes for a soil conductivity measurement system. The soil-engaging components can be: electrically isolated shanks and/or replaceable points or sweeps on a tillage implement; a row cleaner or coulter device on the front of a planter row unit, the closing wheels on the back of the planter row unit, or an entire planter row unit; or an additional soil contacting component added to an existing implement shank. A soil engaging component serving as an electrode is electrically isolated from other components of the implement. A soil conductivity measurement is made by passing current between a first pair of soil-engaging electrodes and measuring voltage resulting from the current between a second pair of soil-engaging electrodes. A narrow profile sensor unit can be attached to the implement to measure additional soil properties.
Abstract:
A soil mapping system for collecting and mapping soil reflectance data in a field includes an implement having a furrow opener for creating a furrow and an optical module. The optical module is arranged to collect soil reflectance data at a predetermined depth within the furrow as the implement traverses a field. The optical module includes two monochromatic light sources, a window arranged to press against the soil, and a photodiode for receiving light reflected back from the soil through the window. The two light sources have different wavelengths and are modulated at different frequencies. The photodiode provides a modulated voltage output signal that contains reflectance data from both of the light sources. Additional measurement devices are carried by the implement for collecting additional soil property data, such as electrical conductivity, pH, and elevation, which can be used together with the optical data to determine variations in soil organic matter.
Abstract:
An agricultural planter having sensors for measuring multiple soil properties adjusts planting depth and seeding rate in real time based on the measured soil properties. An optical module is carried by the planter for collecting soil reflectance data. A pair of soil contact blades protrude from or are embedded in the optical module for collecting soilEC data and soil moisture data. A switching circuit or phase lock loop allows the same soil contact blades to feed signals to both a soil EC signal conditioning circuit and a soil moisture signal conditioning circuit. The soil moisture data can be used to calibrate the soil EC data and the soil reflectance data to compensate for effects of changing soil moisture conditions across a field. The sensor module can be positioned behind a seed tube and used as a seed firmer, or incorporated into a seed tube guard.
Abstract:
A system for measuring soil properties on-the-go using a narrow profile sensor unit is provided on an implement for traversing a field. The sensor unit includes a front disk/coulter arranged to open a slot in the soil, a runner assembly arranged to follow behind the front disk/coulter for sliding contact with the soil in the slot, and a rotating disk/spoked wheel arranged to follow behind the runner assembly to close the slot. The front disk or coulter serves as a first electrode of an electrode array, the runner assembly has second and third electrodes attached thereto, and the rotating disk/spoked wheel serves as a fourth electrode. The electrode array can be used to measure soil electrical conductivity at multiple depths and to measure soil moisture. An optical window and pH sensor can also be incorporated into the runner assembly to measure soil reflectance and soil pH.