摘要:
A MOSFET device structure formed on a silicon on insulator layer, and a process sequence employed to fabricate said MOSFET device structure, has been developed. The process features insulator filled, shallow trench isolation (STI) regions formed in specific locations of the MOSFET device structure for purposes of reducing the risk of parasitic transistor formation underlying a gate structure junction. After formation of either a “T” shaped, or an “H” shaped gate structure, body contact regions of a first conductivity type are formed adjacent to both an STI region and to a component of the gate structure. Formation of a source/drain region of a second conductivity type located on the opposite side of the same STI region, and the same gate structure component, is next performed. Unwanted parasitic transistor formation, which can occur underlying the gate structure via the body contact region and the source/drain region, is prevented by the presence of the separating STI region.
摘要:
A silicon-on-insulator semiconductor device is provided in which a single wafer die contains a transistor over an insulator layer to form a fully depleted silicon-on-insulator device and a transistor formed in a semiconductor island over an insulator structure on the semiconductor wafer forms a partially depleted silicon-on-insulator device.
摘要:
An integrated circuit is provided having a base with a first dielectric layer formed thereon. A second dielectric layer is formed over the first dielectric layer. A third dielectric layer is formed in spaced-apart strips over the second dielectric layer. A first trench opening is formed through the first and second dielectric layers between the spaced-apart strips of the third dielectric layer. A second trench opening is formed contiguously with the first trench opening through the first dielectric layer between the spaced-apart strips of the third dielectric layer. Conductor metals in the trench openings form self-aligned trench interconnects.
摘要:
A MOSFET device structure formed on a silicon on insulator layer, and a process sequence employed to fabricate said MOSFET device structure, has been developed. The process features insulator filled, shallow trench isolation (STI) regions formed in specific locations of the MOSFET device structure for purposes of reducing the risk of parasitic transistor formation underlying a gate structure junction. After formation of either a “T” shaped, or an “H” shaped gate structure, body contact regions of a first conductivity type are formed adjacent to both an STI region and to a component of the gate structure. Formation of a source/drain region of a second conductivity type located on the opposite side of the same STI region, and the same gate structure component, is next performed. Unwanted parasitic transistor formation, which can occur underlying the gate structure via the body contact region and the source/drain region, is prevented by the presence of the separating STI region.
摘要:
A method to form robust dual damascene interconnects by decoupling via and connective line trench filling has been achieved. A first dielectric layer is deposited overlying a silicon nitride layer. A shielding layer is deposited. The shielding layer, the first dielectric layer, and the silicon nitride layer are patterned to form via trenches. A first barrier layer is deposited to line the trenches. The via trenches are filled with a first copper layer by a single deposition or by depositing a seed layer and then electroless or electrochemical plating. The first copper layer is polished down to complete the vias. A second barrier layer is deposited. The second barrier layer is patterned to form via caps. A second dielectric layer is deposited. A capping layer is deposited. The capping layer and the second dielectric layer are patterned to form connective line trenches that expose a part of the via caps. A third barrier layer is deposited to line the connective line trenches. The third barrier layer and the via caps are etched to form trench barrier sidewall spacers and to expose the vias. The connective line trenches are filled with a second copper layer by a single deposition, by a first deposition of a seed layer followed by plating, or by plating using the via as the seed layer. The second copper layer is polished down.
摘要:
An integrated circuit and manufacturing method therefor is provided having a base with a first dielectric layer formed thereon. A second dielectric layer is formed over the first dielectric layer. A third dielectric layer is formed in spaced-apart strips over the second dielectric layer. A first trench opening is formed through the first and second dielectric layers between the spaced-apart strips of the third dielectric layer. A second trench opening is formed contiguously with the first trench opening through the first dielectric layer between the spaced-apart strips of the third dielectric layer. Conductor metals in the trench openings form self-aligned trench interconnects.
摘要:
A method to form SOI devices using wafer bonding. A first substrate is provided having trenches in a first side. A first insulating layer is formed over the first side of the first substrate and filling the trenches. We planarize the first insulating layer to form isolation regions (e.g., STI). The three embodiments of the invention planarize the first insulating layer to different levels. In the second embodiment, the first insulating layer is etched back to form a recess. This recess later forms an air gap. We provide a second substrate having a second insulating layer over a first side of the second substrate. We bond the second insulating layer to the first insulating layer. Next, we thin the first substrate from the second side to expose the first insulating layer to form active areas between the isolation regions. Lastly, devices are formed in and on the active areas.
摘要:
A method to form a silicon on insulator (SOI) device using wafer bonding. A first substrate is provided having an insulating layer over a first side. A second substrate is provided having first isolation regions (e.g., STI) that fill first trenches in the second substrate. Next, we bond the first and second substrate together by bonding the insulating layer to the first isolation regions and the second substrate. Then, a stop layer is formed over the second side of the second substrate. The stop layer and the second side of the second substrate are patterned to form second trenches in the second substrate. The second trenches have sidewalls at least partially defined by the isolation regions and the second trenches expose the second insulating layer. The second trenches define first active regions over the first isolation regions (STI) and define second active regions over the insulating layer. Next, the second trenches are filled with an insulator material to from second isolation regions. Next, the stop layer is removed. Lastly, devices are formed in and on the active regions.