摘要:
A MOSFET device structure formed on a silicon on insulator layer, and a process sequence employed to fabricate said MOSFET device structure, has been developed. The process features insulator filled, shallow trench isolation (STI) regions formed in specific locations of the MOSFET device structure for purposes of reducing the risk of parasitic transistor formation underlying a gate structure junction. After formation of either a “T” shaped, or an “H” shaped gate structure, body contact regions of a first conductivity type are formed adjacent to both an STI region and to a component of the gate structure. Formation of a source/drain region of a second conductivity type located on the opposite side of the same STI region, and the same gate structure component, is next performed. Unwanted parasitic transistor formation, which can occur underlying the gate structure via the body contact region and the source/drain region, is prevented by the presence of the separating STI region.
摘要:
A MOSFET device structure formed on a silicon on insulator layer, and a process sequence employed to fabricate said MOSFET device structure, has been developed. The process features insulator filled, shallow trench isolation (STI) regions formed in specific locations of the MOSFET device structure for purposes of reducing the risk of parasitic transistor formation underlying a gate structure junction. After formation of either a “T” shaped, or an “H” shaped gate structure, body contact regions of a first conductivity type are formed adjacent to both an STI region and to a component of the gate structure. Formation of a source/drain region of a second conductivity type located on the opposite side of the same STI region, and the same gate structure component, is next performed. Unwanted parasitic transistor formation, which can occur underlying the gate structure via the body contact region and the source/drain region, is prevented by the presence of the separating STI region.
摘要:
A system is provided for forming a semiconductor device. Layers of gate dielectric material, gate material, and cap material are formed on a semiconductor substrate. The cap material and a portion of the gate material are processed to form a cap and a gate body portion. A wing on the gate body portion is formed from a remaining portion of the gate material. The gate dielectric material under a portion of the wing on the gate body portion is removed to form a gate dielectric. A lightly-doped source/drain region is formed in the semiconductor substrate using the gate body portion and the wing.
摘要:
A system is provided for forming a semiconductor device. Layers of gate dielectric material, gate material, and cap material are formed on a semiconductor substrate. The cap material and a portion of the gate material are processed to form a cap and a gate body portion. A wing on the gate body portion is formed from a remaining portion of the gate material. The gate dielectric material under a portion of the wing on the gate body portion is removed to form a gate dielectric. A lightly-doped source/drain region is formed in the semiconductor substrate using the gate body portion and the wing.
摘要:
A method for forming a void-free epitaxial cobalt silicide (CoSi2) layer on an ultra-shallow source/drain junction. A patterned silicon structure is cleaned using HF. A first titanium layer, a cobalt layer, and a second titanium layer are successively formed on the patterned silicon substrate. The patterned silicon substrate is annealed at a temperature of between about 550° C. and 580° C. in a nitrogen ambient at atmospheric pressure; whereby the cobalt migrates downward and reacts with the silicon structure to form a CoSi2/CoSi layer, and the first titanium layer migrates upward and the first titanium layer and the second titanium layer react with the nitrigen ambient to form TiN. The TiN and unreacted cobalt are removed. The silicon structure is annealed at a temperature of between about 825° C. and 875° C. to convert the CoSi2/CoSi layer to a CoSi2 layer. The CoSi2 layer can optionally be implanted with impurity ions which are subsequently diffused to form ultra-shallow junctions.
摘要:
The invention provides a new multilevel interconnect structure of air gaps in a layer of IMD. A first layer of dielectric is provided over a surface; the surface contains metal points of contact. Trenches are provided in this first layer of dielectric. The trenches are filled with a first layer of nitride or disposable solid and polished. A second layer of dielectric is deposited over the first layer of dielectric. Trenches are formed in the second layer of dielectric, a second layer of nitride or disposable solid is deposited over the second layer of dielectric. The layer of nitride or disposable solid is polished. A thin layer of oxide is deposited over the surface of the second layer of dielectric. The thin layer of oxide is masked and etched thereby creating openings in this thin layer of oxide, these openings align with the points of intersect of the trenches in the first layer of dielectric and in the second layer of dielectric. The nitride or removable solid is removed from the trenches. The openings in the thin layer of oxide are closed off leaving a network of trenches that are filled with air in the two layers of dielectric that now function as the Inter Level Dielectric.
摘要:
A design, device, system and process for placing slots in active regions (e.g., metal areas). Embodiments of the present invention improve the planarization of metal areas (e.g., lines) and insulators by reducing depressions (e.g., dishing) in the metal areas by including symmetric or square slots inside selected wide metal lines, by adhering to a set of placement rules. Embodiments reduce dishing in copper dual damascene structures. Embodiments reduce data processing requirements for designing and arranging the layout of IC devices and the slots.
摘要:
Low current leakage DRAM structures are achieved using a selective silicon epitaxial growth over an insulating layer on memory cell (device) areas. An insulating layer, that also serves as a stress-release layer, and a Si3N4 hard mask are patterned to leave portions over the memory cell areas. Shallow trenches are etched in the substrate and filled with a CVD oxide which is polished back to the hard mask to form shallow trench isolation (STI) around the memory cell areas. The hard mask is selectively removed to form recesses in the STI aligned over the memory cell areas exposing the underlying insulating layer. Openings are etched in the insulating layer to provide a silicon-seed surface from which is grown a selective epitaxial layer extending over the insulating layer within the recesses. After growing a gate oxide on the epitaxial layer, FETs and DRAM capacitors can be formed on the epitaxial layer. The insulating layer under the epitaxial layer drastically reduces the capacitor leakage current and improves DRAM device performance. This self-aligning method also increases memory cell density, and is integratable into current DRAM processes to reduce cost.
摘要:
A method for the formation of an air gap structure for use in inter-metal applications. A metal pattern of metal lines is formed, a layer of Plasma Polymerized Methylsilane (PPMS) resist is deposited on top of this pattern. The surface of the PPMS resist is subjected to selective exposure. The unexposed PPMS is removed after which the process is completed by closing up the openings within the PPMS.
摘要:
A process to form a FET using a replacement gate. An example feature is that the PMOS sacrificial gate is made narrower than the NMOS sacrificial gate. The PMOS gate is implanted preferably with Ge to increase the amount of poly sacrificial gate that is oxidized to form PMOS spacers. The spacers are used as masks for the LDD Implant. The space between the PLDD regions is preferably larger that the space between the NLDD regions because of the wider PMOS spacers. The PLDD tends to diffuse readily more than NLDD due to the dopant being small and light (i.e. Boron). The wider spacer between the PMOS regions improves device performance by improving the short channel effects for PMOS. In addition, the oxidization of the sacrificial gates allows trimming of sacrificial gates thus extending the limitation of lithography. Another feature of an embodiment is that a portion of the initial pad oxide is removed, thus reducing the amount of undercut created during the channel oxide strip for the dummy gate process. This would improve on the gate overlap capacitance for a T-gate transistor. In a second embodiment, two metal gates with different work functions are formed.