Abstract:
Traveling-wave tube amplifiers for high-frequency signals, including terahertz signals, and methods for making a slow-wave structure for the traveling-wave tube amplifiers are provided. The slow-wave structures include helical conductors that are self-assembled via the release and relaxation of strained films from a sacrificial growth substrate.
Abstract:
Josephson junctions (JJ) based on bilayers of azimuthally misaligned two-dimensional materials having superconducting states are provided. Also provided are electronic devices and circuits incorporating the JJs as active components and methods of using the electronic devices and circuits. The JJs are formed from bilayers composed of azimuthally misaligned two-dimensional materials having a first superconducting segment and a second superconducting segment separated by a weak-link region that is integrated into the bilayer.
Abstract:
Josephson junctions (JJ) based on bilayers of azimuthally misaligned two-dimensional materials having superconducting states are provided. Also provided are electronic devices and circuits incorporating the JJs as active components and methods of using the electronic devices and circuits. The JJs are formed from bilayers composed of azimuthally misaligned two-dimensional materials having a first superconducting segment and a second superconducting segment separated by a weak-link region that is integrated into the bilayer.
Abstract:
Traveling-wave tube amplifiers and methods for making slow-wave structures for the amplifiers are provided. The SWSs include helical conductors that are self-assembled via the release of stressed electrically conductive strips from a sacrificial material. The helical conductors can be electroplated post-self-assembly to fortify the helix, reduce losses, and tailor the dimensions and operating parameters of the helix.
Abstract:
Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.
Abstract:
Semiconductor trilayer structures that are doped and strained are provided. Also provided are mechanically flexible transistors, including radiofrequency transistors, incorporating the trilayer structures and methods for fabricating the trilayer structures and transistors. The trilayer structures comprise a first layer of single-crystalline semiconductor material, a second layer of single-crystalline semiconductor material and a third layer of single-crystalline semiconductor material. In the structures, the second layer is in contact with and sandwiched between the first and third layers and the first layer is selectively doped to provide one or more doped regions in the layer.
Abstract:
Piezoelectrically actuated devices constructed from thin semiconductor membranes bonded directly to piezoelectric substrates are provided. Methods for fabricating these devices are also provided. The bonding of the semiconductor to the piezoelectric material does not require the use of any intermediate layers, such as bonding agents.
Abstract:
Traveling-wave tube amplifiers for high-frequency signals, including terahertz signals, and methods for making a slow-wave structure for the traveling-wave tube amplifiers are provided. The slow-wave structures include helical conductors that are self-assembled via the release and relaxation of strained films from a sacrificial growth substrate.
Abstract:
Traveling-wave tube amplifiers for high-frequency signals, including terahertz signals, and methods for making a slow-wave structure for the traveling-wave tube amplifiers are provided. The slow-wave structures include helical conductors that are self-assembled via the release and relaxation of strained films from a sacrificial growth substrate.
Abstract:
High-quality, single-crystalline silicon-germanium (Si(1-x)Gex) having a high germanium content is provided. Layers of the high-quality, single-crystalline silicon-germanium can be grown to high sub-critical thicknesses and then released from their growth substrates to provide Si(1-x)Gex films without lattice mismatch-induced misfit dislocations or a mosaic distribution of crystallographic orientations.