Abstract:
In a method used for initializing a first bus device and a second bus device sharing a common transmission engine of a bus, a first link of the first bus device and a second link of the second bus device to the common transmission engine are disabled when the computer system is booted. Next, the first link and the second link are enabled in order. Then, a first state updating signal from the first bus device is issued after the first link to the common transmission engine is established. Finally, a second state updating signal from the second bus device is issued after the first state updating signal is received and the second link to the common transmission engine is established.
Abstract:
An apparatus and method of flash ROM management. The apparatus comprises a storage device, a strapping component and a process unit. The storage device stores multiple address records comprising an identity and an address range associated with a flash ROM. The strapping component is configured to output a signal to determine flash ROM type. The process unit receives a memory access request with an access range from the CPU and the signal from the strapping component queries the identity by matching the access range and the address range, and finally executes an LPC 1.1 memory access instruction with the identity and the access range corresponding to the memory cycle.
Abstract:
A system and method for power management in computer systems. System status assessed by a Northbridge, and the result transferred to a Southbridge. A system control table is provided in the Southbridge, whereby power management without software control is provided.
Abstract:
An interruption control system includes an interruption message generator, a stop clock control module and an interruption status indicating path. The interruption message generator is used for decoding and identifying a message signaled interrupt (MSI) issued by a first peripheral device or a second peripheral device when interruption is to be conducted, and generates an interruption status indicating message in response to the message signaled interrupt (MSI). The stop clock control module is coupled to the interruption message generator and the CPU and de-asserts a stop clock signal that is previously asserted to have the CPU enter a power-saving state to have the CPU deactivate the power-saving state in response to the interruption status indicating message. The interruption status indicating path is used for transmitting the interruption status indicating message.
Abstract:
An interruption control system includes a first input/output interruption controller, a second input/output interruption controller and an interruption status indicating path. The first input/output interruption controller is coupled to a first peripheral device and a south bridge chip, and issues a wake-up signal to the south bridge chip in response to a first interrupt signal asserted by the first peripheral device so as to deactivate a power-saving state of the computer system. The second input/output interruption controller is coupled to a second peripheral device and a north bridge chip, and in response to a second interrupt signal asserted by the second peripheral device, generates a message signaled interrupt. The interruption status indicating path transmits the message signaled interrupt from the second input/output interruption controller to the south bridge chip to have the south bridge chip deactivate the power-saving state of the computer system in response to the message signaled interrupt.
Abstract:
Electronic systems supporting multiple operation modes are provided, wherein the electronic system includes a portable device and a docking system. The portable device at least includes one processing unit and a first operation module, wherein the processing unit includes a plurality of operation frequencies and is operable in a plurality of operation modes, and each operation mode corresponds to an operation frequency. The docking system includes a container for containing the portable device and a second operation module. When the portable device is plugged into the container of the docking system, the portable device receives a signal from the docking system, determines an operation mode of the portable device according to the received signal, adjusts the operation frequency of the processing unit corresponding to the operation mode and selectively applies the first modules or second modules to control the electronic system.
Abstract:
A bus cycle trapping system includes at least one register, a north bridge, a south bridge and a central processing unit (CPU). The register is configured to store at least one trapping parameter. The north bridge traps a bus cycle matching the at least one trapping parameter while issuing an activating signal. The south bridge sends a system management interrupt message according to the activating signal. The CPU enters a system management mode according to the system management interrupt and executes a system management interrupt routine for doing a debugging test of the bus cycle matching the trapping parameter.
Abstract:
A debugging device and method are provided, including a central processing unit (CPU) connected to a chipset with a system management interrupt pin. The debugging method includes sending out a system management interrupt signal to central processing unit from the system management interrupt pin of the chipset. Then the CPU moves into a system management mode and pops out a debugging operation window for selecting and executing each debugging item. After the execution of each debugging item is completed, the CPU will leave the debugging operation window and return to the next instruction before debugging. After the execution of each debugging item is completed in the debugging operation window, the CPU will return to the operation system and continue the execution of next instruction before debugging. The execution of debugging will not influence the status and the program execution from the operating system. The disclosed debugging method is convenient for executing each debugging item at any time.
Abstract:
A method and apparatus for driving a non-native SATA hard disk applied in a computer is provided. The computer includes a basic input/output system (BIOS) and an operating system (OS), both of which support an advanced configuration and power interface (ACPI). The non-native SATA hard disk includes a conversion interface and a parallel ATA (PATA) internal disk. First, issue an interrupt. Then, process an interrupt handle routine for detecting and saving the timing mode of the PATA internal disk. Next, load a default IDE driver. Then, report the saved timing mode. Finally, set the SATA hard disk according to the timing mode.
Abstract:
A system and method of real-time power management for use in computer systems. The system utilization is assessed by a North bridge, and a result is transferred to a South bridge. Thereafter, through transmitting sideband signals to a voltage controller and a frequency controller by sideband pins, the North Bridge provides faster and more efficient power management performance than the system management bus (SMBUS).