摘要:
Focus and exposure parameters may be controlled in a lithographic process for manufacturing microelectronics by creating a complementary tone pattern of shapes and spaces in a resist film on a substrate. Corresponding dimensions of the resist shape and space are measured and the adequacy of focus or exposure dose are determined as a function of the measured dimensions. Etching parameters may also be controlled by creating a complementary tone pattern of etched shapes and spaces on a substrate. Corresponding dimensions of the etched shape and space are measured and the adequacy of etching parameters are determined as a function of the measured dimensions.
摘要:
A computer-implemented method is provided for generating an electromagnetic field (EMF) correction boundary layer (BL) model corresponding to a mask, which can include using a computer to perform a method, in which asymmetry factor data is determined from aerial image measurements of a plurality of different gratings representative of features provided on a mask, wherein the aerial image measurements having been made at a plurality of different focus settings. The method may also include determining boundary layer (BL) model parameters of an EMF correction BL model corresponding to the mask by fitting to the asymmetry factor measurements. Alternatively, the asymmetry factor data can be determined from measurements of line widths of photoresist patterns, wherein the photoresist patterns correspond to images cast by a plurality of gratings at a plurality of different defocus distances, and the gratings can be representative of features of a mask.
摘要:
A system and method is provided which predicts problematic areas for lithography in a circuit design, and more specifically, which uses modeling data from a modeling tool to accurately predict problematic lithographic areas. The method includes identifying surface heights of plurality of tiles of a modeled wafer, and mathematically mimicking a lithographic tool to determine best planes of focus for exposure for the plurality of tiles.
摘要:
A method for determining an image of a patterned object formed by a polychromatic lithographic projection system having a laser radiation source of a finite spectral bandwidth and a lens for imaging the patterned object to an image plane within a resist layer. The method comprises providing patterns for the object, a spectrum of the radiation source to be used in the lithographic projection system, an intensity and polarization distribution of the radiation source, and a lens impulse response in the spatial domain or in the spatial frequency domain of the image. The method then includes forming a polychromatic 4D bilinear vector kernel comprising a partially coherent polychromatic joint response between pairs of points in the spatial domain or in the spatial frequency domain, determining the dominant polychromatic 2D kernels of the polychromatic 4D bilinear vector kernel, and determining the image of the patterned object from convolutions of the object patterns with the dominant polychromatic 2D kernels.
摘要:
An anti-reflective coating material, a microelectronic structure that includes an anti-reflective coating layer formed from the anti-reflective coating material and a related method for exposing a resist layer located over a substrate while using the anti-reflective coating layer provide for attenuation of secondary reflected vertical alignment beam radiation when aligning the substrate including the resist layer located thereover. Such enhanced vertical alignment provides for improved dimensional integrity of a patterned resist layer formed from the resist layer, as well as additional target layers that may be fabricated while using the resist layer as a mask.
摘要:
A method of making a process monitor grating pattern for use in a lithographic imaging system comprises determining minimum resolvable pitch of a plurality of spaced, adjacent line elements, and selecting a process monitor grating period that is an integer multiple M, greater than 1, of the minimum resolvable pitch. The method then includes designing a process monitor grating pattern having a plurality of adjacent sets of grouped line elements spaced from each other. Each set of grouped line elements is spaced from and parallel to an adjacent set of grouped line elements by the process monitor grating period, such that when the process monitor grating pattern is projected by the lithographic imaging system the line elements in each set are unresolvable from each other and Fourier coefficients of diffracted orders m created by the line elements in the range of 1
摘要翻译:制造用于光刻成像系统的过程监视光栅图案的方法包括确定多个间隔相邻的线元素的最小可分辨间距,以及选择大于1的整数倍M,大于1的过程监视光栅周期 最小可分辨的音高。 该方法然后包括设计具有彼此间隔开的多个相邻组合的线组件的过程监视光栅图案。 每组分组的线元素通过过程监视光栅周期与相邻的一组分组线元素间隔开并平行,使得当过程监视光栅图案由光刻成像系统投影时,每组中的线元素不能从 在1 <| m |≤= M的范围内由线路元件产生的衍射阶数m的傅立叶系数为零。
摘要:
An optical pellicle to protect a photomask from particulate contamination during semiconductor lithography is provided which has enhanced transparency and operational characteristics. The pellicle utilizes alternating layers of a transparent polymer and a transparent inorganic layer to form pellicles which have high transmission properties and high strength. In a preferred pellicle, a three-layer pellicle is provided having a transparent inorganic layer sandwiched between two polymer layers. A five-layer pellicle is also provided with the outer layers and a middle layer being polymer layers and the inner layers an inorganic material. The preferred polymer layer is a perfluorinated polymer such as Teflon® and the preferred inorganic material is silicon dioxide. The pellicle of the invention provides light transmission of greater than 0.99% at incident light angles up to arcsine 0.45.
摘要:
The present invention relates generally to a method for lithographically printing a mask pattern on a substrate, in particular a semiconductor substrate, wherein the mask pattern includes features with diverse pitches. These features may include device features such as vias or contact holes and lines in integrated circuits. The method comprises splitting the mask pattern into a plurality of masks, wherein one or more of the masks contains relatively tightly nested features and one or more of the masks contains relatively isolated features. Each of the plurality of masks is then successively exposed on a photoresist layer on the substrate. For each exposure, the exposure conditions, photoresist layer, other thin films layers, etching process, mask writing process, and/or mask pattern bias may be optimized for the tightly nested feature pattern or isolated feature pattern.
摘要:
Focus and exposure parameters may be controlled in a lithographic process for manufacturing microelectronics by creating a complementary tone pattern of shapes and spaces in a resist film on a substrate. Corresponding dimensions of the resist shape and space are measured and the adequacy of focus or exposure dose are determined as a function of the measured dimensions. Etching parameters may also be controlled by creating a complementary tone pattern of etched shapes and spaces on a substrate. Corresponding dimensions of the etched shape and space are measured and the adequacy of etching parameters are determined as a function of the measured dimensions.
摘要:
The focus and overlay alignment of photolithographic exposure tools of the type wherein the location of the wafer is accurately tracked with respect to a baseline position, such as in step and repeat cameras, are evaluated by monitoring the output signal generated by a photodetector in response to the light radiated from one or more periodic test patterns carried by a re-useable calibration wafer while such a test pattern is being exposed to an aerial image of a matching calibration mask. Overlay alignment suitably is evaluated by stepping the pattern on the wafer from side-to-side and fore and aft of the aerial image while monitoring the photodetector for a peak output signal, whereby overlay alignment errors along the x-axis and y-axis of the exposure tool are determined by the displacement of the wafer positions at which such peak signals are detected from the positions at which such peak signals ae expected. Focus, on the other hand, suitably is evaluated by incrementally defocusing the imaging optics of the exposure tool while monitoring the rms width of the output signal generated by the photodetector as the wafer pattern is stepped through the aerial image of the calibration mask at each focal setting. The best focal setting minimizes the rms width of the output signal.