摘要:
The present invention relates to a microorganism variant having the ability to produce hydrocarbons, including alkane, and a method of producing hydrocarbons, including alkane, using the same, and more particularly, to a microorganism variant obtained by introducing a gene encoding an enzyme converting fatty acyl-acp to free fatty acid, a gene encoding an enzyme converting free fatty acid to fatty acyl-CoA, a gene encoding an enzyme converting fatty acyl-CoA to fatty aldehyde and a gene encoding an enzyme converting fatty aldehyde to alkane into a microorganism improved so as to be suitable for the production of hydrocarbons, including alkane, and a method of producing hydrocarbons, including alkane, using the same. The microorganism variant of the present invention has high potential to be used to improve strains by additional metabolic flux engineering, and thus is useful for the industrial production of hydrocarbons, including alkane.
摘要:
The present invention relates to microbial variants producing homo-succinic acid at high yields and a method for producing homo-succinic acid using the same, more particularly, to a microbial variant constructed by disrupting a lactate dehydro-genase-encoding gene (idhA) and an acetate kinase-encoding gene (ackA), as well as a method for producing homo-succinic acid at high concentration, which comprises culturing such variants using glucose as a carbon source in anaerobic conditions.
摘要:
The present invention relates to recombinant microorganisms having an increased ability to produce butanol, and a method of producing butanol using the same. More specifically, the invention relates to recombinant microorganisms whose ability to produce butanol was increased by manipulation of their metabolic networks, and a method of producing butanol using the same. The recombinant microorganisms having an increased ability to produce butanol comprise a deletion of a gene, which encodes an enzyme that converts acetyl CoA to acetate, in host microorganisms having genes that encode enzymes involved in acetyl CoA and butyryl CoA biosynthetic pathway. The recombinant microorganisms obtained by manipulating the metabolic flux of microorganisms are able to selectively produce butanol with high efficiency, and thus are useful as microorganisms for producing industrial solvents and transportation fuels.
摘要:
The present invention relates to recombinant mutant microorganisms having an increased ability to produce alcohol and a method of producing alcohol using the same, and more particularly to recombinant mutant microorganisms which have an increased ability to produce butanol, ethanol, isopropanol or mixed alcohols, which can be used as fuel, while producing little or no producing acetone as a byproduct, and to a method of producing butanol, ethanol, isopropanol or mixed alcohols using the same. The inventive recombinant mutant microorganisms having an increased ability to produce butanol or mixed alcohols and to remove acetone are those in which genes that encode enzymes involved in producing butanol from butyryl-CoA or butylaldehyde and in producing isopropanol from acetone were amplified or introduced in host microorganisms. The recombinant mutant microorganisms produce little or no byproducts such as acetone and can have an increased ability to produce alcohols, as a result of manipulating metabolic pathways. Thus, the recombinant mutant microorganisms are useful for industrial production of butanol or mixed alcohols comprising butanol and isopropanol.
摘要:
Carbon nanotube (CNT) films, patterns and biochips and methods of making the same are provided. Such a biochip comprises a bio-receptor attached by means of an exposed chemical functional group on a surface of a high density CNT film or pattern produced by repeated lamination of CNTs on a substrate with exposed amine groups. Various types of CNT-biochips may be fabricated by bonding of bio-receptors to a CNT pattern (or film) containing exposed carboxyl groups or modified by various chemical functional groups. Further, the CNT-biochip may be used to measure an electrical or electrochemical signal using both conductor and semiconductor properties of the CNT, thereby not needing labeling. Upon fluorescent measurement of DNA hybridization using such a CNT-DNA chip it is possible to show more distinct signals useful for genotyping, mutation detection, pathogen identification and the like.
摘要:
The present invention relates to a method for expressing a target protein on an exosporium forming the outermost surface of bacterial spores. More particularly, the present invention relates to a method for expressing a target protein on the surface of cells and spores using an exosporium as a matrix for surface expression, and methods for the production of a protein array, the production of antibodies, the separation of a certain substance from a mixture, bioconversion, and the improvement of a target protein, which are characterized by using the cells or spores having the target protein that was expressed on the surface by the above expression method. The method for expressing the target protein on the surface of the spore outer membrane of the gene carriers according to the present invention has effects in that a variety of the target proteins can be expressed and the level of surface expression of the target protein is increased compared to the existing technology, and also the structural stability of the gene carriers having the target protein expressed on their surface, the viability of the host, and the rapidity of the screening method, are greatly increased.
摘要:
Provided are mutant microorganisms having the ability to produce a high concentration of putrescine wherein gene(s) involved in the putrescine degradation or utilization pathway is inactivated or deleted and a preparation method thereof. A method for producing putrescine in high yield by culturing the mutant microorganisms is also provided. The mutant microorganisms are useful for producing a high concentration of putrescine which can be widely used in various industrial applications.
摘要:
The present invention relates to microbial variants producing homo-succinic acid at high yields and a method for producing homo-succinic acid using the same, more particularly, to a microbial variant constructed by disrupting a lactate dehydro-genase-encoding gene (idhA) and an acetate kinase-encoding gene (ackA), as well as a method for producing homo-succinic acid at high concentration, which comprises culturing such variants using glucose as a carbon source in anaerobic conditions.
摘要:
The present invention relates to a method for secreting and producing a target protein into cell culture broth. More particularly, the invention relates to a microorganism co-transformed with a recombinant expression vector containing E. coli outer membrane protein F (OmpF) and a recombinant expression vector containing a target protein to be secreted into cell culture broth, as well as a method of secreting and producing the target protein into cell culture broth by culturing the microorganism. According to the invention, the target protein can be secreted into cell culture broth in a pure form without fusion with other proteins so that the efficient isolation and purification of the target protein is possible.