摘要:
A cathode and a battery including a cathode active material including a layer-structured material having a composition of xLi2MO3-(1-x)LiMeO2; and a metal oxide having a perovskite structure. The cathode active material may have improved structural stability by intermixing a metal oxide having a similar crystalline structure with the layer-structured material, and thus, life and capacity characteristics of a cathode and a lithium battery including the metal oxide may be improved.
摘要:
The present invention relates to recombinant microorganisms having an increased ability to produce butanol, and a method of producing butanol using the same. More specifically, the invention relates to recombinant microorganisms whose ability to produce butanol was increased by manipulation of their metabolic networks, and a method of producing butanol using the same. The recombinant microorganisms having an increased ability to produce butanol comprise a deletion of a gene, which encodes an enzyme that converts acetyl CoA to acetate, in host microorganisms having genes that encode enzymes involved in acetyl CoA and butyryl CoA biosynthetic pathway. The recombinant microorganisms obtained by manipulating the metabolic flux of microorganisms are able to selectively produce butanol with high efficiency, and thus are useful as microorganisms for producing industrial solvents and transportation fuels.
摘要:
An electrolyte for a lithium secondary battery, the electrolyte comprising: a lithium salt, a non-aqueous organic solvent, and an additive represented by Formula 1 below: wherein R1, R2, R3, and R4 are the same as defined in the detailed description.
摘要:
A polyurethane binder prepared by a polyurethane compound having double bonds and by crosslinking the polyurethane compounds. The polyurethane binder having double bonds can be dispersed in water with the dispersant including a reactive group such as a carboxyl group, and thus an organic solvent is not required to produce an electrode. The crosslinked polyurethane binder with a high crosslinking density provides an excellent elastic force and binding force, and thus the electrode and the lithium battery employing the polyurethane binder have improved recovery properties and charge/discharge properties.
摘要:
An anode active material comprises metal core particles, metal nano wires formed on the metal core particles, pores between the metal core particles and the metal nano wires, and a carbon-based coating layer formed on a surface of the metal core particles and metal nano wires. In the anode active material according to the present invention, the metal core particles and metal nano wires are combined to form a single body, and a carbon-based coating layer is formed on the surface of the metal nano wires and metal core particles. Thus, volume changes in the pulverized metal core particles can be effectively buffered during charging and discharging, and the metal core particles are electrically connected through the metal nano wires. As a result, volume changes in the anode active material and degradation of the electrode can be prevented, thereby providing excellent initial charge/discharge efficiency and enhanced charge/discharge capacity.
摘要:
An electrode active material, a method of manufacturing the same, and an electrode and a lithium battery utilizing the same. The electrode active material includes a core capable of intercalating and deintercalating lithium and a coating layer formed on at least a portion of a surface of the core, wherein the coating layer includes a composite metal halide having a spinel structure.
摘要:
An electrolyte for a lithium secondary battery, which includes a lithium salt, a nonaqueous organic solvent and at least one additive selected from the group consisting of vitamin G (vitamin B2, riboflavin), vitamin B3 (niacinamide), vitamin B4 (adenine), vitamin B5 (pantothenic acid), vitamin H (vitamin B7, biotin), vitamin M (vitamin B9, folic acid), vitamin BX (4-aminobenzoic acid), vitamin D2 (ergocalciferol), vitamin D3 (cholecalciferol), vitamin K1 (phylloquinone), ascorbyl palmitate, and sodium ascorbate.
摘要:
The present invention relates to a recombinant mutant microorganism having enhanced butanol producing capacity and a method for producing butanol using the same. In the microorganism, genes coding for enzymes responsible for the biosynthesis of lactate, ethanol and/or acetate are deleted or attenuated and genes coding for enzymes involved in butanol biosynthesis are introduced and amplified.
摘要:
A composite anode active material including: a metal capable of alloy formation with lithium; an intermetallic compound; and a solid solution, in which the solid solution is an alloy of the metal capable of alloy formation with lithium and the intermetallic compound, and the solid solution and the intermetallic compound have a same crystal structure.
摘要:
The present invention relates to mutant microorganisms having improved productivity of branched-chain amino acids, and a method for producing branched-chain amino acids using the mutant microorganisms. More specifically, relates to mutant microorganisms having improved productivity of L-valine, which are produced by attenuating or deleting a gene encoding an enzyme involved in L-isoleucine biosynthesis, a gene encoding an enzyme involved in L-leucine, and a gene encoding an enzyme involved in D-pantothenic acid biosynthesis, and mutating a gene encoding an enzyme involved in L-valine biosynthesis, such that the expression thereof is increased, as well as a method for producing L-valine using the mutant microorganisms. The inventive mutant microorganisms produced by site-specific mutagenesis and metabolic pathway engineering can produce branched-chain amino acids, particularly L-valine, with high efficiency, and thus will be useful as industrial microorganisms for producing L-valine.