Abstract:
A low current line termination circuit includes first and second input interfaces each configured to receive a Vreceive+ and a Vreceive− voltage, respectively. The circuit further includes a first diode connected transistor (“DCT”) coupled to the second input interface, a first switching transistor (“ST”) coupled to the first DCT and to the first input interface, and a first delay element coupled between one of the input interfaces and a gate of the first ST. The circuit further includes a second DCT coupled to the one of the two input interfaces, a second ST coupled to the second DCT and to the second input interface, and a second delay element coupled between another of the two input interfaces and a gate of the second ST.
Abstract:
Examples described herein provide an apparatus having a circuit with a grounding circuit and a switch. The apparatus generally includes a gate induced drain leakage (GIDL) protection circuit coupled to the switch and to an output voltage. The GIDL protection circuit may include a switch protection circuit configured to maintain a drain voltage of the switch less than a first supply voltage (Vdd) when the circuit is in an OFF state; and a ground protection circuit configured to maintain a drain voltage of the grounding circuit less than the first supply voltage when the circuit is in an ON state.
Abstract:
A circuit for extending the bandwidth of a termination block is described. The circuit comprises an I/O contact configured to receive an input signal; and a termination circuit coupled to the I/O contact, wherein the termination circuit comprises a plurality of trim legs coupled between a power supply and the I/O contact, each trim leg having a switch to control the impedance in the trim leg.
Abstract:
In an example, an apparatus includes an analog switch having an n-type metal oxide semiconductor (NMOS) circuit in parallel with a p-type metal oxide semiconductor (PMOS) circuit between a switch input and a switch output. The analog switch is responsive to an enable signal that determines switch state thereof. The NMOS circuit includes a switch N-channel transistor coupled to a buffer N-channel transistor, a gate of the switch N-channel transistor coupled to the enable signal and a gate of the buffer N-channel transistor coupled to a modulated N-channel gate voltage. The PMOS circuit including a switch P-channel transistor coupled to a buffer P-channel transistor, a gate of the switch P-channel transistor coupled to a complement of the enable signal and a gate of the buffer P-channel transistor coupled to a modulated P-channel gate voltage. A control circuit is coupled to the analog switch to provide the modulated N-channel and modulated P-channel gate voltages each of which alternates between a respective supply voltage and a respective gate induced drain leakage (GIDL) mitigation voltage based on the switch state.
Abstract:
A circuit for implementing a charge/discharge switch in an integrated circuit is described. The circuit comprises a supply bias path coupled to a first node, wherein the supply bias path provides a charging bias current to the first node; a charge transistor connected between the first node and a first terminal of a capacitor; a charge switch coupled between the first node and a ground potential, wherein the charge switch enables charging of the capacitor by way of the first node; a discharge transistor connected between the first terminal of the capacitor and a second node; a discharge switch coupled between the second node and a reference voltage, wherein the discharge switch enables discharging of the capacitor by way of the second node; and a ground bias path coupled between the second node and ground, wherein the ground bias path provides a discharging bias current to the second node. A method of implementing a charge/discharge switch in an integrated circuit is also described.
Abstract:
A complementary metal-oxide-semiconductor (CMOS) switching system with increased supply rejection is disclosed. The system comprises a voltage regulator and a CMOS circuit. The voltage regulator receives a supply voltage and generates a regulated voltage by regulating an amplitude of the received supply voltage. The CMOS circuit includes an input terminal to receive a first voltage, switching circuitry to selectively couple the CMOS circuit to the voltage regulator in one of a plurality of configurations, and an output terminal to output a second voltage based at least in part on the first voltage and the regulated voltage when the CMOS circuit is coupled to the voltage regulator in a first configuration of the plurality of configurations.
Abstract:
In an example, an apparatus includes an analog switch having an n-type metal oxide semiconductor (NMOS) circuit in parallel with a p-type metal oxide semiconductor (PMOS) circuit between a switch input and a switch output. The analog switch is responsive to an enable signal that determines switch state thereof. The NMOS circuit includes a switch N-channel transistor coupled to a buffer N-channel transistor, a gate of the switch N-channel transistor coupled to the enable signal and a gate of the buffer N-channel transistor coupled to a modulated N-channel gate voltage. The PMOS circuit including a switch P-channel transistor coupled to a buffer P-channel transistor, a gate of the switch P-channel transistor coupled to a complement of the enable signal and a gate of the buffer P-channel transistor coupled to a modulated P-channel gate voltage. A control circuit is coupled to the analog switch to provide the modulated N-channel and modulated P-channel gate voltages each of which alternates between a respective supply voltage and a respective gate induced drain leakage (GIDL) mitigation voltage based on the switch state.
Abstract:
A circuit for receiving an input signal is described. The receiver comprises a first receiver input configured to receive a first input of a differential input signal; a second receiver input configured to receive a second input of a differential input signal; a differential pair having an inverting input and a non-inverting input; a first impedance matching element coupled to the differential pair, wherein the first impedance matching element provides DC impedance matching from the inverting input and non-inverting input of the differential pair; and a second impedance matching element coupled to the differential pair, wherein the second impedance matching element provides AC impedance matching from the inverting input and non-inverting input of the differential pair.
Abstract:
Devices for isolating an input from an output are disclosed. For example, a device includes a first p-type metal oxide semiconductor transistor and a first circuit. A source of the first p-type metal oxide semiconductor transistor is connected to an input of the device. The first circuit is for delivering a signal on the input of the device to a gate of the first p-type metal oxide semiconductor transistor when an enable signal is deactivated and for delivering a ground voltage to the gate of the first p-type metal oxide semiconductor transistor when the enable signal is activated.
Abstract:
Devices for isolating an input from an output are disclosed. For example, a device includes a first p-type metal oxide semiconductor transistor and a first circuit. A source of the first p-type metal oxide semiconductor transistor is connected to an input of the device. The first circuit is for delivering a signal on the input of the device to a gate of the first p-type metal oxide semiconductor transistor when an enable signal is deactivated and for delivering a ground voltage to the gate of the first p-type metal oxide semiconductor transistor when the enable signal is activated.